Dynamic Bayesian Network

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf Boltzmann machine
probabilistic graphical model
gptkbp:canBe continuous
discrete
hybrid
uncertainty
missing data
fully observable
partially observable
gptkbp:canLearnMove gptkb:Markov_Chain_Monte_Carlo
variational inference
expectation-maximization
gptkbp:capturedBy temporal evolution
gptkbp:component edges
nodes
conditional probability distributions
gptkbp:extendsTo Boltzmann machine
gptkbp:field gptkb:artificial_intelligence
gptkb:machine_learning
data science
statistics
gptkbp:generalizes gptkb:Kalman_filter
gptkb:Hidden_Markov_Model
gptkbp:hasApplication natural language processing
financial modeling
activity recognition
fault diagnosis
gene regulatory network modeling
gptkbp:hasModel nonlinear dynamics
non-Gaussian noise
sequences of variables
https://www.w3.org/2000/01/rdf-schema#label Dynamic Bayesian Network
gptkbp:introduced gptkb:Kevin_Murphy
gptkbp:introducedIn 1998
gptkbp:parameter initial state distribution
observation model
transition model
gptkbp:relatedTo gptkb:Kalman_filter
gptkb:Hidden_Markov_Model
gptkbp:represents Markov processes
conditional dependencies over time
non-Markovian processes
gptkbp:usedFor robotics
speech recognition
time series analysis
bioinformatics
modeling temporal processes
gptkbp:visualizes two-slice temporal Bayes net
gptkbp:bfsParent gptkb:Bayesian_Network
gptkbp:bfsLayer 7