gptkbp:instance_of
|
gptkb:neural_networks
|
gptkbp:architecture
|
gptkb:Deep_Learning
|
gptkbp:coat_of_arms
|
201
|
gptkbp:developed_by
|
Gao Huang
|
gptkbp:has
|
Fully Connected Layer
Dense Blocks
Global Average Pooling Layer
Transition Layers
|
gptkbp:has_achieved
|
High Accuracy
|
https://www.w3.org/2000/01/rdf-schema#label
|
Dense Net-201
|
gptkbp:is_applied_in
|
Image Classification
|
gptkbp:is_compared_to
|
gptkb:Res_Net
|
gptkbp:is_evaluated_by
|
Robustness
Generalization Ability
Top-1 Accuracy
Top-5 Accuracy
|
gptkbp:is_implemented_in
|
gptkb:Tensor_Flow
gptkb:Py_Torch
|
gptkbp:is_influenced_by
|
gptkb:Inception_Network
gptkb:VGGNet
|
gptkbp:is_known_for
|
Reducing Overfitting
Improved Gradient Flow
Feature Reuse
High Parameter Efficiency
Improving Model Interpretability
|
gptkbp:is_optimized_for
|
Memory Efficiency
|
gptkbp:is_part_of
|
gptkb:Computer_Vision
gptkb:Artificial_Intelligence
gptkb:Dense_Net_Family
Deep Learning Frameworks
|
gptkbp:is_related_to
|
gptkb:stage_adaptation
Fine-tuning
|
gptkbp:is_supported_by
|
gptkb:NVIDIA_GPUs
gptkb:TPUs
|
gptkbp:is_trained_in
|
gptkb:Image_Net
gptkb:CIFAR-10
|
gptkbp:is_used_in
|
gptkb:Augmented_Reality
gptkb:art
gptkb:Autonomous_Vehicles
gptkb:Natural_Language_Processing
gptkb:speeches
gptkb:robotics
Anomaly Detection
Object Detection
Time Series Analysis
Facial Recognition
Image Restoration
Generative Models
Video Analysis
Semantic Segmentation
Medical Image Analysis
|
gptkbp:performance
|
gptkb:Image_Net_Challenge
Visual Recognition Tasks
|
gptkbp:uses
|
gptkb:Batch_Normalization
gptkb:Dropout
Dense Connectivity
Re LU Activation Function
|
gptkbp:year_established
|
gptkb:2017
|
gptkbp:bfsParent
|
gptkb:Dense_Net
|
gptkbp:bfsLayer
|
5
|