Deep Belief Networks

GPTKB entity

Statements (56)
Predicate Object
gptkbp:instance_of gptkb:machine_learning
gptkbp:analyzes gptkb:PCA
t-SNE
gptkbp:can_be_combined_with convolutional neural networks
recurrent neural networks
gptkbp:can_be_fine_tuned_using backpropagation
gptkbp:can_be_regularized_using L2 regularization
dropout
gptkbp:can_be_used_for dimensionality reduction
gptkbp:composed_of multiple layers
gptkbp:developed_by gptkb:Geoffrey_R._Hinton
gptkbp:first_introduced gptkb:2006
gptkbp:has_applications_in gptkb:robotics
finance
bioinformatics
gptkbp:has_limitations training time
interpretability
gptkbp:has_research_focus transfer learning
semi-supervised learning
https://www.w3.org/2000/01/rdf-schema#label Deep Belief Networks
gptkbp:improves feature extraction
gptkbp:is_applied_in image recognition
natural language processing
speech recognition
gptkbp:is_challenged_by overfitting
adversarial attacks
vanishing gradients
gptkbp:is_different_from traditional neural networks
gptkbp:is_evaluated_by F1 score
ROC AUC
accuracy
cross-validation
benchmark datasets
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Python
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_influenced_by biological neural networks
gptkbp:is_optimized_for gradient descent
gptkbp:is_part_of gptkb:Artificial_Intelligence
gptkb:neural_networks
gptkbp:is_popular_in gptkb:scientific_community
industry applications
gptkbp:is_similar_to autoencoders
variational autoencoders
gptkbp:is_used_in recommendation systems
self-driving cars
game AI
gptkbp:related_to deep learning
gptkbp:requires large datasets
gptkbp:training contrastive divergence
gptkbp:used_for unsupervised learning
gptkbp:utilizes restricted Boltzmann machines
gptkbp:bfsParent gptkb:Jürgen_Schmidhuber
gptkb:Geoffrey_R._Hinton
gptkbp:bfsLayer 3