|
gptkbp:instanceOf
|
gptkb:abbreviation
|
|
gptkbp:application
|
gptkb:diagnosis
autonomous vehicles
machine translation
speech synthesis
image classification
object detection
|
|
gptkbp:canBe
|
gptkb:convolutional_neural_network
gptkb:feedforward_neural_network
gptkb:recurrent_neural_network
|
|
gptkbp:developedBy
|
1980s
|
|
gptkbp:hasComponent
|
hidden layer
input layer
output layer
|
|
gptkbp:hasProperty
|
multiple layers
nonlinear activation functions
|
|
gptkbp:implementedIn
|
gptkb:TensorFlow
gptkb:Keras
gptkb:MXNet
gptkb:Caffe
gptkb:PyTorch
|
|
gptkbp:improves
|
batch normalization
data augmentation
dropout
transfer learning
residual connections
attention mechanisms
|
|
gptkbp:limitation
|
overfitting
computationally expensive
vanishing gradient problem
requires large labeled data
|
|
gptkbp:popularizedBy
|
gptkb:Geoffrey_Hinton
gptkb:Yann_LeCun
gptkb:Yoshua_Bengio
|
|
gptkbp:relatedTo
|
gptkb:convolutional_neural_network
deep learning
|
|
gptkbp:requires
|
large datasets
high computational power
|
|
gptkbp:standsFor
|
gptkb:Deep_Neural_Network
|
|
gptkbp:trainer
|
backpropagation
gradient descent
|
|
gptkbp:usedIn
|
gptkb:artificial_intelligence
gptkb:machine_learning
computer vision
natural language processing
speech recognition
|
|
gptkbp:bfsParent
|
gptkb:大冶北站
|
|
gptkbp:bfsLayer
|
8
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
DNN
|