DDPG

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instanceOf algorithm
gptkbp:employs target networks
gptkbp:hasContent Q-learning
gptkbp:hasDepartment PPO
gptkbp:hasVariants gptkb:DDPG_with_Hindsight_Experience_Replay
DDPG_with_prioritized_experience_replay
https://www.w3.org/2000/01/rdf-schema#label DDPG
gptkbp:isA off-policy algorithm
gptkbp:isAvenueFor robotics
game playing
control tasks
gptkbp:isBasedOn actor-critic architecture
gptkbp:isChallengedBy instability during training
overestimation bias
sample inefficiency
gptkbp:isConsidered state-of-the-art in certain tasks
gptkbp:isEvaluatedBy mean squared error
average reward
continuous control benchmarks
robotic control tasks
Atari_games
gptkbp:isInfluencedBy Q-learning
DQN
SARSA
gptkbp:isLocatedIn gptkb:PyTorch
TensorFlow
gptkbp:isNotableFor discrete action spaces
gptkbp:isPartOf AI research
deep learning frameworks
gptkbp:isRelatedTo actor-critic methods
deep reinforcement learning
policy gradient methods
gptkbp:isSimilarTo TD3
gptkbp:isSupportedBy research papers
tutorials
online courses
gptkbp:isUsedFor autonomous driving
resource management
financial trading
other algorithms
game AI development
policy learning
value function approximation
gptkbp:isUsedIn real-world applications
reinforcement learning
simulated environments
gptkbp:isUtilizedIn OpenAI Gym
Unity ML-Agents
gptkbp:isVisitedBy soft updates
ensemble methods
double Q-learning
gptkbp:performance continuous action spaces
gptkbp:requires hyperparameter tuning
gptkbp:uses deep neural networks
gptkbp:utilizes experience replay
gptkbp:wasAffecting Lillicrap_et_al.
gptkbp:wasEstablishedIn 2015