Count-based Exploration in Reinforcement Learning

GPTKB entity

Statements (23)
Predicate Object
gptkbp:instanceOf exploration method
gptkbp:alternativeTo entropy-based exploration
parameter noise exploration
gptkbp:application deep RL
tabular RL
gptkbp:approach assigns bonus based on state visitation counts
gptkbp:challenge scaling to high-dimensional state spaces
gptkbp:citation Bellemare et al. 2016
Strehl and Littman 2008
gptkbp:field gptkb:reinforcement_learning
gptkbp:goal encourage exploration of less-visited states
https://www.w3.org/2000/01/rdf-schema#label Count-based Exploration in Reinforcement Learning
gptkbp:influencedBy gptkb:multi-armed_bandit_problem
gptkbp:notableFor gptkb:E3
MBIE-EB
Pseudo-counts
R-MAX
gptkbp:relatedTo exploration-exploitation tradeoff
intrinsic motivation
gptkbp:solvedBy density models for pseudo-counts
gptkbp:usedIn gptkb:machine_learning
gptkbp:bfsParent gptkb:Hari_Vedantam
gptkbp:bfsLayer 7