Cart Pole-v2

GPTKB entity

Statements (65)
Predicate Object
gptkbp:instance_of gptkb:gymnasium
gptkbp:action Discrete
Move left or right
gptkbp:action_space_size 2
gptkbp:agent Iterative process
RL agent
gptkbp:analyzes Graphical representation of the cart and pole
gptkbp:available_in Open AI Gym library
gptkbp:common_algorithms PPO, A3 C
gptkbp:community_support Strong community support
gptkbp:created_by gptkb:Open_AI
gptkbp:description A reinforcement learning environment where a pole is balanced on a cart.
gptkbp:difficulty Easy to moderate
gptkbp:difficulty_levels Beginner-friendly
gptkbp:discount_factor Gamma value used in RL
gptkbp:environment Classic control
gptkbp:environment_features Simple dynamics
gptkbp:environment_id gptkb:Cart_Pole-v2
gptkbp:environment_reset Randomized initial conditions
gptkbp:environment_type gptkb:Control
gptkbp:environment_updates Regularly maintained
gptkbp:evaluates After every few episodes
Average reward per episode
gptkbp:first_released gptkb:2016
gptkbp:goal Keep the pole balanced for as long as possible
gptkbp:gym_version 0.21.0
gptkbp:has_function Resets the environment to an initial state
https://www.w3.org/2000/01/rdf-schema#label Cart Pole-v2
gptkbp:hyperparameter_tuning Common practice
gptkbp:initial_state Randomly generated
gptkbp:input_output Continuous and discrete
Discrete action selection
gptkbp:is_explored_in Epsilon-greedy
gptkbp:is_implemented_in gptkb:Python
gptkbp:is_popular_in Academic research
gptkbp:is_taught_in Varies by algorithm
gptkbp:latest_version v2
gptkbp:learning_algorithms_used gptkb:DQN
gptkbp:library Tensor Flow, Py Torch
gptkbp:max_episode_steps gptkb:500
gptkbp:observation_space Continuous
gptkbp:performance Cumulative reward
gptkbp:policy_type Stochastic or deterministic
gptkbp:prize_pool 1 for every timestep the pole remains upright
gptkbp:real_world_applications Robotics, control systems
gptkbp:related_to Control theory
gptkbp:render_method Visualizes the environment
gptkbp:requires Gym library
gptkbp:reward_shaping Not typically used
gptkbp:seed_method Sets the random seed for reproducibility
gptkbp:simulation_speed Real-time simulation
gptkbp:state Cart position, cart velocity, pole angle, pole velocity at tip
gptkbp:state_normalization Not required
gptkbp:state_space 4-dimensional vector
gptkbp:state_space_size gptkb:4
gptkbp:step_method Takes an action and returns the next state, reward, done, and info
gptkbp:success_rate Varies by algorithm
gptkbp:termination_condition Pole angle exceeds 15 degrees or cart position exceeds 2.4
gptkbp:training Varies by algorithm
gptkbp:tutorials Many online tutorials
gptkbp:used_for Benchmarking RL algorithms
gptkbp:used_in Reinforcement Learning research
gptkbp:user_base Researchers, students, hobbyists
gptkbp:bfsParent gptkb:Cart_Pole-v1
gptkbp:bfsLayer 5