Boosted Trees

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf Machine Learning Algorithm
gptkbp:application gptkb:insurance
Finance
Marketing
Fraud Detection
Image Classification
Ranking
gptkbp:basedOn Ensemble Learning
gptkbp:consistsOf Multiple Decision Trees
gptkbp:contrastsWith gptkb:Bagging
gptkb:Random_Forests
gptkbp:feature Combining Weak Learners
Sequential Training
Weighted Data Points
https://www.w3.org/2000/01/rdf-schema#label Boosted Trees
gptkbp:hyperparameter Learning Rate
Minimum Child Weight
Number of Trees
Subsample Ratio
Tree Depth
gptkbp:implementedIn gptkb:Spark_MLlib
gptkb:scikit-learn
R
CatBoost Library
LightGBM Library
XGBoost Library
gptkbp:improves Prediction Accuracy
gptkbp:introducedIn gptkb:Robert_Schapire
gptkb:Yoav_Freund
1990s
gptkbp:limitation Overfitting
Computational Cost
Sensitivity to Noisy Data
gptkbp:reduces Variance
Bias
gptkbp:relatedTo gptkb:Bagging
gptkb:Random_Forests
Decision Trees
Stacking
Ensemble Methods
gptkbp:supportsAlgorithm gptkb:CatBoost
gptkb:LightGBM
gptkb:XGBoost
gptkb:Gradient_Boosting
gptkb:AdaBoost
gptkbp:usedIn Regression
Classification
gptkbp:bfsParent gptkb:Classification_and_Regression_Tree
gptkbp:bfsLayer 7