gptkbp:instanceOf
|
Machine Learning Algorithm
|
gptkbp:application
|
gptkb:insurance
Finance
Marketing
Fraud Detection
Image Classification
Ranking
|
gptkbp:basedOn
|
Ensemble Learning
|
gptkbp:consistsOf
|
Multiple Decision Trees
|
gptkbp:contrastsWith
|
gptkb:Bagging
gptkb:Random_Forests
|
gptkbp:feature
|
Combining Weak Learners
Sequential Training
Weighted Data Points
|
https://www.w3.org/2000/01/rdf-schema#label
|
Boosted Trees
|
gptkbp:hyperparameter
|
Learning Rate
Minimum Child Weight
Number of Trees
Subsample Ratio
Tree Depth
|
gptkbp:implementedIn
|
gptkb:Spark_MLlib
gptkb:scikit-learn
R
CatBoost Library
LightGBM Library
XGBoost Library
|
gptkbp:improves
|
Prediction Accuracy
|
gptkbp:introducedIn
|
gptkb:Robert_Schapire
gptkb:Yoav_Freund
1990s
|
gptkbp:limitation
|
Overfitting
Computational Cost
Sensitivity to Noisy Data
|
gptkbp:reduces
|
Variance
Bias
|
gptkbp:relatedTo
|
gptkb:Bagging
gptkb:Random_Forests
Decision Trees
Stacking
Ensemble Methods
|
gptkbp:supportsAlgorithm
|
gptkb:CatBoost
gptkb:LightGBM
gptkb:XGBoost
gptkb:Gradient_Boosting
gptkb:AdaBoost
|
gptkbp:usedIn
|
Regression
Classification
|
gptkbp:bfsParent
|
gptkb:Classification_and_Regression_Tree
|
gptkbp:bfsLayer
|
7
|