Autoregressive Integrated Moving Average models
GPTKB entity
Statements (40)
Predicate | Object |
---|---|
gptkbp:instanceOf |
statistical analysis
|
gptkbp:abbreviation |
gptkb:ARIMA
|
gptkbp:appliesTo |
gptkb:signal_processing
finance weather forecasting econometrics |
gptkbp:assumes |
linearity
normality of errors no autocorrelation in residuals |
gptkbp:component |
autoregressive (AR)
integrated (I) moving average (MA) |
gptkbp:generalizes |
autoregressive models
ARMA models moving average models |
https://www.w3.org/2000/01/rdf-schema#label |
Autoregressive Integrated Moving Average models
|
gptkbp:implementedIn |
gptkb:Python
gptkb:SAS gptkb:MATLAB R |
gptkbp:introduced |
Box and Jenkins
|
gptkbp:introducedIn |
1970
|
gptkbp:limitation |
sensitive to outliers
not suitable for non-linear time series requires stationary data (after differencing) |
gptkbp:mathematical_form |
ARIMA(p,d,q)
|
gptkbp:parameter |
q
p d |
gptkbp:relatedTo |
gptkb:SARIMA
gptkb:ARIMAX gptkb:Box–Jenkins_methodology |
gptkbp:requires |
parameter estimation
diagnostic checking model identification stationarity (after differencing) |
gptkbp:usedFor |
time series analysis
forecasting |
gptkbp:bfsParent |
gptkb:ARIMA_models
|
gptkbp:bfsLayer |
7
|