ARIMA models

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf statistical analysis
gptkbp:alternativeTo gptkb:exponential_smoothing
machine learning models
state space models
gptkbp:appliesTo economics
finance
weather forecasting
sales forecasting
gptkbp:assumes linearity
no autocorrelation in residuals
gptkbp:canBe non-seasonal
seasonal (SARIMA)
gptkbp:category univariate time series models
gptkbp:component autoregressive (AR) part
integrated (I) part
moving average (MA) part
gptkbp:diagnostics gptkb:Ljung-Box_test
ACF plots
PACF plots
residual analysis
gptkbp:extendsTo gptkb:SARIMA
gptkb:ARIMAX
gptkbp:fullName gptkb:Autoregressive_Integrated_Moving_Average_models
gptkbp:hasModel non-stationary time series
stationary time series
https://www.w3.org/2000/01/rdf-schema#label ARIMA models
gptkbp:implementedIn gptkb:Python
gptkb:SAS
gptkb:MATLAB
R
gptkbp:inferenceMethod maximum likelihood
least squares
gptkbp:introduced gptkb:George_Box
gptkb:Gwilym_Jenkins
gptkbp:introducedIn 1970
gptkbp:limitation sensitive to outliers
cannot model non-linear relationships
requires large data
gptkbp:parameter d (degree of differencing)
p (order of AR part)
q (order of MA part)
gptkbp:publishedIn gptkb:Time_Series_Analysis:_Forecasting_and_Control
gptkbp:relatedTo gptkb:Kalman_filter
gptkb:Box–Jenkins_methodology
gptkb:vector_autoregression_(VAR)
gptkbp:requires parameter estimation
stationarity (after differencing)
gptkbp:usedFor time series forecasting
gptkbp:bfsParent gptkb:SPSS_Forecasting
gptkbp:bfsLayer 6