Automated Machine Learning (Auto ML)

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Neural_Architecture_Search
gptkbp:benefits large enterprises
small businesses
non-experts
gptkbp:can_lead_to better performance
cost savings
faster deployment
gptkbp:challenges computational resources
data quality issues
model interpretability
gptkbp:developed_by data scientists
https://www.w3.org/2000/01/rdf-schema#label Automated Machine Learning (Auto ML)
gptkbp:improves model selection
gptkbp:includes gptkb:Auto-sklearn
gptkb:H2_O.ai
gptkb:Google_Cloud_Auto_ML
gptkb:TPOT
Auto ML frameworks
gptkbp:is_adopted_by government agencies
research institutions
startups
gptkbp:is_challenged_by ethical considerations
data privacy issues
bias in algorithms
gptkbp:is_evaluated_by cross-validation
A/ B testing
holdout validation
gptkbp:is_implemented_in gptkb:R
gptkb:Library
gptkbp:is_influenced_by user feedback
business objectives
model performance metrics
gptkbp:is_popular_in gptkb:film_production_company
academia
gptkbp:is_promoted_by online courses
tech conferences
data science communities
gptkbp:is_related_to gptkb:physicist
gptkb:Artificial_Intelligence
gptkbp:is_supported_by cloud platforms
commercial software
open-source tools
gptkbp:is_used_in data preprocessing
hyperparameter tuning
feature engineering
gptkbp:provides automated model evaluation
gptkbp:purpose automate the process of applying machine learning to real-world problems
gptkbp:reduces human intervention
gptkbp:utilizes algorithms