Auto-sklearn

GPTKB entity

Statements (56)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Automated_Machine_Learning_(Auto_ML)
gptkbp:allows requires significant computational resources
can be sensitive to data quality
may not perform well on small datasets
requires careful tuning for optimal performance
gptkbp:based_on Bayesian optimization
gptkbp:developed_by Fraunhofer UMSICHT
gptkbp:has_community active user community
gptkbp:has_documentation https://automl.github.io/auto-sklearn/master/
gptkbp:has_feature data preprocessing
model evaluation
automated pipeline generation
ensemble construction
https://www.w3.org/2000/01/rdf-schema#label Auto-sklearn
gptkbp:is_a_hub_for https://github.com/automl/auto-sklearn
gptkbp:is_available_on gptkb:Anaconda
gptkb:Py_PI
gptkbp:is_compatible_with gptkb:lake
gptkb:Google_Colab
gptkb:computer
gptkbp:is_influenced_by gptkb:H2_O.ai
gptkb:TPOT
Auto-WEKA
gptkbp:is_optimized_for model selection
hyperparameters
feature preprocessing
gptkbp:is_part_of gptkb:Open_ML
Auto ML framework
gptkbp:is_related_to gptkb:Artificial_Intelligence
gptkb:software_framework
data mining
predictive modeling
data preprocessing techniques
gptkbp:is_used_by gptkb:University
gptkb:physicist
data analysts
industry professionals
gptkbp:is_used_in data science
machine learning competitions
gptkbp:language gptkb:Library
gptkbp:performance F1 score
accuracy
AUC
mean squared error
gptkbp:provides hyperparameter optimization
automated model selection
gptkbp:release_date gptkb:2015
gptkbp:requires Python version 3.5 or higher
scikit-learn version 0.18 or higher
gptkbp:supports regression
multi-class classification
ensemble learning
gptkbp:uses gptkb:scikit-learn
meta-learning