AutoML models

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instanceOf machine learning technology
gptkbp:challenge model interpretability
data quality
computational cost
search space complexity
gptkbp:enables non-experts to build ML models
rapid prototyping of ML solutions
gptkbp:fieldOfStudy gptkb:artificial_intelligence
gptkb:machine_learning
data science
gptkbp:goal democratize machine learning
improve efficiency of ML model development
reduce human intervention in ML pipeline
https://www.w3.org/2000/01/rdf-schema#label AutoML models
gptkbp:implementedIn gptkb:DataRobot
gptkb:H2O_AutoML
gptkb:Amazon_SageMaker_Autopilot
gptkb:Auto-sklearn
gptkb:IBM_AutoAI
gptkb:Microsoft_Azure_AutoML
gptkb:TPOT
gptkb:Google_AutoML
gptkb:MLJAR_AutoML
AutoGluon
gptkbp:originatedIn research in hyperparameter optimization
research in meta-learning
research in neural architecture search
gptkbp:output feature importance
model explanations
model performance metrics
trained machine learning models
gptkbp:popularizedBy gptkb:Auto-sklearn
gptkb:TPOT
gptkb:Google_AutoML
gptkbp:relatedTo automated machine learning
gptkbp:supports gptkb:dictionary
regression
clustering
time series forecasting
tabular data
image data
text data
gptkbp:usedBy business analysts
data scientists
machine learning engineers
gptkbp:usedFor automating data preprocessing
automating feature engineering
automating hyperparameter tuning
automating model evaluation
automating model selection
gptkbp:bfsParent gptkb:Vertex_AI_Prediction
gptkb:Vertex_Explainable_AI
gptkbp:bfsLayer 6