AutoML

GPTKB entity

Statements (72)
Predicate Object
gptkbp:instanceOf machine learning technology
gptkbp:challenge gptkb:AutoCV_Challenge
gptkb:AutoDL_Challenge
gptkb:AutoGraph_Challenge
gptkb:AutoML_Challenge
gptkb:AutoML_Decathlon
gptkb:AutoNLP_Challenge
gptkb:AutoSeries_Challenge
gptkb:AutoSpeech_Challenge
gptkb:AutoTabular_Challenge
gptkb:AutoWSL_Challenge
gptkbp:enables non-experts to use machine learning
gptkbp:firstMentioned 2015
gptkbp:goal accelerate model development
democratize access to machine learning
improve efficiency of machine learning workflows
reduce human intervention in machine learning
reduce need for expert knowledge
https://www.w3.org/2000/01/rdf-schema#label AutoML
gptkbp:includes automated feature engineering
automated hyperparameter tuning
automated model selection
automated data preprocessing
automated model deployment
automated model evaluation
gptkbp:limitation scalability issues
data privacy concerns
can be computationally expensive
interpretability challenges
limited customization
may lack transparency
may not outperform expert-tuned models
potential for overfitting
gptkbp:notableTool gptkb:Google_Cloud_AutoML
gptkb:DataRobot
gptkb:H2O_AutoML
gptkb:Amazon_SageMaker_Autopilot
gptkb:Auto-sklearn
gptkb:AutoKeras
gptkb:IBM_AutoAI
gptkb:MLJAR
gptkb:Microsoft_Azure_AutoML
gptkb:TPOT
gptkbp:purpose automate the process of applying machine learning to real-world problems
gptkbp:relatedTo gptkb:MLOps
gptkb:artificial_intelligence
gptkb:machine_learning
data science
deep learning
data preprocessing
feature engineering
model selection
hyperparameter optimization
gptkbp:researchArea gptkb:AAAI
gptkb:ICML
gptkb:NeurIPS
gptkb:IJCAI
gptkb:KDD
gptkbp:researchConference gptkb:AutoML_Conference
gptkbp:standsFor gptkb:Automated_Machine_Learning
gptkbp:usedIn data science
education
finance
healthcare
manufacturing
marketing
research
retail
business analytics
gptkbp:bfsParent gptkb:Vertex_AI
gptkb:Cloud_Data_Labeling_API
gptkbp:bfsLayer 5