Statements (72)
Predicate | Object |
---|---|
gptkbp:instanceOf |
machine learning technology
|
gptkbp:challenge |
gptkb:AutoCV_Challenge
gptkb:AutoDL_Challenge gptkb:AutoGraph_Challenge gptkb:AutoML_Challenge gptkb:AutoML_Decathlon gptkb:AutoNLP_Challenge gptkb:AutoSeries_Challenge gptkb:AutoSpeech_Challenge gptkb:AutoTabular_Challenge gptkb:AutoWSL_Challenge |
gptkbp:enables |
non-experts to use machine learning
|
gptkbp:firstMentioned |
2015
|
gptkbp:goal |
accelerate model development
democratize access to machine learning improve efficiency of machine learning workflows reduce human intervention in machine learning reduce need for expert knowledge |
https://www.w3.org/2000/01/rdf-schema#label |
AutoML
|
gptkbp:includes |
automated feature engineering
automated hyperparameter tuning automated model selection automated data preprocessing automated model deployment automated model evaluation |
gptkbp:limitation |
scalability issues
data privacy concerns can be computationally expensive interpretability challenges limited customization may lack transparency may not outperform expert-tuned models potential for overfitting |
gptkbp:notableTool |
gptkb:Google_Cloud_AutoML
gptkb:DataRobot gptkb:H2O_AutoML gptkb:Amazon_SageMaker_Autopilot gptkb:Auto-sklearn gptkb:AutoKeras gptkb:IBM_AutoAI gptkb:MLJAR gptkb:Microsoft_Azure_AutoML gptkb:TPOT |
gptkbp:purpose |
automate the process of applying machine learning to real-world problems
|
gptkbp:relatedTo |
gptkb:MLOps
gptkb:artificial_intelligence gptkb:machine_learning data science deep learning data preprocessing feature engineering model selection hyperparameter optimization |
gptkbp:researchArea |
gptkb:AAAI
gptkb:ICML gptkb:NeurIPS gptkb:IJCAI gptkb:KDD |
gptkbp:researchConference |
gptkb:AutoML_Conference
|
gptkbp:standsFor |
gptkb:Automated_Machine_Learning
|
gptkbp:usedIn |
data science
education finance healthcare manufacturing marketing research retail business analytics |
gptkbp:bfsParent |
gptkb:Vertex_AI
gptkb:Cloud_Data_Labeling_API |
gptkbp:bfsLayer |
5
|