Amazon Sage Maker Studio Pipelines

GPTKB entity

Statements (70)
Predicate Object
gptkbp:instance_of gptkb:Sage
gptkbp:allows data scientists to build, manage, and automate workflows
gptkbp:automated model training and tuning
gptkbp:can_be_used_for feature engineering
data drift detection
gptkbp:can_be_used_to create custom workflows
automate data ingestion
manage model lifecycle
schedule pipeline executions
gptkbp:can_be_used_with gptkb:Jupyter_notebooks
gptkbp:enables team collaboration
data preprocessing
data validation
model monitoring
collaboration among data scientists
reproducible machine learning experiments
gptkbp:facilitates model evaluation
model deployment
https://www.w3.org/2000/01/rdf-schema#label Amazon Sage Maker Studio Pipelines
gptkbp:includes step functions
gptkbp:integrates_with gptkb:Amazon_Cloud_Watch
gptkb:Amazon_Redshift
gptkb:Amazon_S3
gptkb:AWS_Lambda
gptkb:Sage
gptkbp:is_accessible_by gptkb:AWS_Management_Console
gptkbp:is_available_in multiple AWS regions
gptkbp:is_compatible_with Docker containers
Python SDK
gptkbp:is_designed_for enterprise machine learning projects
gptkbp:is_designed_to reduce manual effort in ML workflows
gptkbp:is_optimized_for gptkb:performance
scalability
gptkbp:is_part_of AWS ecosystem
AWS AI services
machine learning lifecycle
gptkbp:is_used_by data scientists
gptkbp:is_used_for experiment tracking
model deployment automation
gptkbp:offers integration with third-party tools
real-time monitoring
security features
cost management features
version control for models
visualization of pipeline execution
gptkbp:provides monitoring and logging capabilities
user-friendly interface
cloud-based infrastructure
resource management tools
automated machine learning workflows
data source integration
pipeline orchestration
integration with Git Hub
customizable pipeline templates
end-to-end machine learning solutions
gptkbp:provides_access_to data preparation tools
gptkbp:supports data transformation
batch processing
data exploration
data labeling
hyperparameter optimization
real-time inference
model retraining
multi-model endpoints
multiple machine learning frameworks
data science best practices
A/ B testing
CI/ CD for machine learning
gptkbp:bfsParent gptkb:Amazon_Web_Services_AI
gptkbp:bfsLayer 5