AlphaGo Zero

GPTKB entity

Properties (59)
Predicate Object
gptkbp:instanceOf gptkb:physicist
gptkbp:awardedBy various accolades
gptkbp:basedOn reinforcement learning
gptkbp:completed superhuman performance
gptkbp:contributedTo the understanding of neural networks
gptkbp:defeated AlphaGo Master
top human players
gptkbp:developedBy DeepMind
gptkbp:diedIn Go
gptkbp:environmentalProtection AI technology
gptkbp:exhibits the power of AI in strategic games
gptkbp:has no prior knowledge of Go
gptkbp:has_a no human intervention
gptkbp:has_a_focus_on AI researchers
https://www.w3.org/2000/01/rdf-schema#label AlphaGo Zero
gptkbp:impact AI ethics discussions
gptkbp:influenced AI development in other fields
further_research_in_AI
gptkbp:introduced Demis Hassabis
gptkbp:is_a_key_player_in the AI revolution
gptkbp:is_a_model_for complex problem solving
future AI systems
other strategic AI applications
gptkbp:is_a_resource_for AI performance
gptkbp:is_a_subject_of academic studies
unsupervised learning
public fascination
gptkbp:is_featured_in documentaries
academic papers
gptkbp:is_involved_in machine learning
gptkbp:is_known_for its innovative training methods
gptkbp:is_part_of DeepMind's AI portfolio
AlphaGo_project
gptkbp:is_recognized_for its efficiency in learning
the_AI_community
gptkbp:is_referenced_in AI competitions
AI literature
gptkbp:is_studied_in AI capabilities
its impact on society
its decision-making processes
gptkbp:is_used_in human intelligence
media outlets
conferences
educational contexts
gptkbp:learnsMove self-play
gptkbp:led_to algorithm development
gptkbp:notable_event computer science
AI research
gptkbp:notableEvent AI's_capabilities_in_games
gptkbp:notableFeature AI history
gptkbp:publishedBy scientific journals
gptkbp:releasedIn 2017
gptkbp:successor gptkb:AlphaGo
gptkbp:taught 40 days
gptkbp:training multiple GPUs
gptkbp:uses neural networks
human data
gptkbp:utilizes gptkb:Monte_Carlo_tree_search
gptkbp:was_a_result_of the potential of AI in games