Agnostic System Identification for Reinforcement Learning

GPTKB entity

Statements (15)
Predicate Object
gptkbp:instanceOf gptkb:academic_journal
gptkbp:allows The paper proposes a method for system identification in reinforcement learning that does not require prior knowledge of the system class.
gptkbp:author gptkb:Christian_Luck
gptkb:Michael_Lutter
gptkb:Jan_Peters
gptkbp:citation over 50 (as of 2024)
gptkbp:field gptkb:Machine_Learning
gptkb:Reinforcement_Learning
System Identification
https://www.w3.org/2000/01/rdf-schema#label Agnostic System Identification for Reinforcement Learning
gptkbp:publicationYear 2020
gptkbp:publishedIn gptkb:Proceedings_of_the_37th_International_Conference_on_Machine_Learning_(ICML_2020)
gptkbp:url https://proceedings.mlr.press/v119/lutter20a.html
gptkbp:bfsParent gptkb:Lihong_Li
gptkbp:bfsLayer 6