Adversarial examples in neural networks

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf research
gptkbp:application security testing
robustness evaluation
gptkbp:challenge certifying robustness
defending against adversarial attacks
detecting adversarial examples
gptkbp:concerns AI safety
model vulnerability
trustworthiness of AI systems
gptkbp:defenseMechanism adversarial training
robust optimization
input preprocessing
gptkbp:defines Inputs to machine learning models that are intentionally designed to cause the model to make a mistake.
gptkbp:field gptkb:artificial_intelligence
gptkb:machine_learning
gptkbp:firstDescribed 2013
Szegedy et al.
https://www.w3.org/2000/01/rdf-schema#label Adversarial examples in neural networks
gptkbp:impact can cause misclassification
can reduce model accuracy
gptkbp:method adding small perturbations to input data
gptkbp:notableBattle Carlini & Wagner attack
DeepFool
Fast Gradient Sign Method (FGSM)
Jacobian-based Saliency Map Attack (JSMA)
Projected Gradient Descent (PGD)
gptkbp:notableContributor gptkb:Ian_Goodfellow
gptkb:Christian_Szegedy
gptkb:Dawn_Song
gptkb:Alexey_Kurakin
Nicholas Carlini
Nicolas Papernot
gptkbp:notablePublication Explaining and Harnessing Adversarial Examples (Szegedy et al., 2013)
Towards Evaluating the Robustness of Neural Networks (Carlini & Wagner, 2017)
Adversarial Machine Learning at Scale (Kurakin et al., 2016)
Intriguing properties of neural networks (Szegedy et al., 2013)
gptkbp:relatedConcept robustness
explainability
transferability
black-box attack
gradient masking
white-box attack
gptkbp:relatedTo deep learning
neural networks
gptkbp:trainer gptkb:CIFAR-10
gptkb:ImageNet
gptkb:MNIST
gptkbp:bfsParent gptkb:Christian_Szegedy
gptkbp:bfsLayer 7