AI Platform Pipelines

GPTKB entity

Statements (72)
Predicate Object
gptkbp:instance_of gptkb:cloud_services
gptkbp:enables collaboration among teams
automated model training
experiment tracking
gptkbp:facilitates model deployment
https://www.w3.org/2000/01/rdf-schema#label AI Platform Pipelines
gptkbp:integrates_with gptkb:Big_Query
gptkb:cloud_storage
gptkbp:is_accessible_by REST API
gptkbp:is_available_in multiple regions
gptkbp:is_available_on gptkb:Google_Cloud_Console
gptkbp:is_compatible_with gptkb:Jupyter_Notebooks
gptkbp:is_integrated_with gptkb:Cloud_Dataflow
gptkb:Cloud_AI_Platform
gptkb:Cloud_Functions
gptkb:Cloud_Pub/_Sub
gptkb:Cloud_SQL
gptkb:Cloud_Spanner
gptkb:Cloud_Memorystore
gptkb:Cloud_Run
gptkbp:is_optimized_for gptkb:Kubernetes
gptkbp:is_part_of Google Cloud AI services
MLOps practices
AI development lifecycle
gptkbp:is_scalable large datasets
gptkbp:is_used_by data scientists
machine learning engineers
gptkbp:is_used_for data analysis
data ingestion
model evaluation
feature engineering
model validation
data exploration
model optimization
model monitoring
data quality checks
model lifecycle management
model retraining
model comparison
model serving
model deployment automation
gptkbp:offers visualization tools
versioning for models
pre-built components
gptkbp:provides monitoring capabilities
security features
end-to-end machine learning workflows
resource management tools
logging features
pipeline orchestration
API for custom integrations
user interface for pipeline management
gptkbp:supports gptkb:XGBoost
gptkb:Tensor_Flow
gptkb:Kubeflow
gptkb:scikit-learn
data preprocessing
cloud-native applications
custom components
data transformation
hyperparameter tuning
multi-cloud environments
data augmentation
real-time predictions
batch processing
data pipelines
data labeling
data versioning
Python SDK
CI/ CD practices
gptkbp:bfsParent gptkb:Vertex_AI
gptkbp:bfsLayer 6