2 DU-Net

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:application Biomedical Image Analysis
gptkbp:architectural_style Encoder-Decoder
gptkbp:based_on Fully Convolutional Networks
gptkbp:can_be_used_with gptkb:streaming_service
Data Augmentation
gptkbp:content_type Convolutional Layers
Pooling Layers
Up-sampling Layers
gptkbp:developed_by gptkb:Olaf_Ronneberger
gptkbp:established Re LU
gptkbp:has_variants gptkb:3_DU-Net
gptkb:Attention_U-Net
gptkb:Nested_U-Net
https://www.w3.org/2000/01/rdf-schema#label 2 DU-Net
gptkbp:improves Localization of Structures
gptkbp:input_output Segmentation Maps
2 D Images
gptkbp:is_adopted_by Research Institutions
Healthcare Industry
Tech Companies
gptkbp:is_designed_for Image Segmentation
gptkbp:is_evaluated_by Accuracy
Precision
Recall
Io U (Intersection over Union)
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:FCN_(Fully_Convolutional_Network)
gptkb:Alumni_Association
gptkb:Seg_Net
gptkbp:is_known_for High Performance
Flexibility in Architecture
Robustness to Overfitting
gptkbp:is_part_of Deep Learning Frameworks
gptkbp:is_popular_in Medical Imaging
gptkbp:is_supported_by Community Contributions
Open Source Implementations
gptkbp:is_used_for Cell Segmentation
Organ Segmentation
Tumor Segmentation
gptkbp:is_used_in Competitions
Research Papers
gptkbp:losses Dice Loss
Binary Cross-Entropy Loss
gptkbp:published_year gptkb:2015
gptkbp:requires GPU for Training
gptkbp:training Annotated Datasets
Limited Data
gptkbp:uses Skip Connections
gptkbp:bfsParent gptkb:3_DU-Net
gptkbp:bfsLayer 4