3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation

GPTKB entity

Statements (22)
Predicate Object
gptkbp:instanceOf gptkb:academic_journal
gptkbp:application biomedical volumetric data segmentation
gptkbp:architecture gptkb:convolutional_neural_network
gptkbp:author gptkb:Thomas_Brox
gptkb:Olaf_Ronneberger
gptkb:Özgün_Çiçek
gptkb:Ahmed_Abdulkadir
gptkb:Soeren_S._Lienkamp
gptkbp:citation high
gptkbp:extendsTo gptkb:U-Net_architecture
gptkbp:field deep learning
medical image analysis
gptkbp:focusesOn volumetric segmentation
sparse annotation
gptkbp:hasMethod gptkb:3D_U-Net
https://www.w3.org/2000/01/rdf-schema#label 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
gptkbp:influenced medical image segmentation research
gptkbp:openSource available
gptkbp:publicationYear 2016
gptkbp:publishedIn Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2016
gptkbp:bfsParent gptkb:3D_U-Net
gptkbp:bfsLayer 7