variational autoencoders

GPTKB entity

Statements (54)
Predicate Object
gptkbp:instanceOf gptkb:model
generative model
gptkbp:application data compression
image generation
representation learning
anomaly detection
gptkbp:canBe dimensionality reduction
feature extraction
semi-supervised learning
data synthesis
data denoising
generating new samples
missing data imputation
gptkbp:category gptkb:model
unsupervised learning algorithm
deep generative model
gptkbp:citation gptkb:Kingma,_D.P._&_Welling,_M._(2013)._Auto-Encoding_Variational_Bayes.
arXiv:1312.6114
gptkbp:field gptkb:artificial_intelligence
deep learning
unsupervised learning
gptkbp:hasComponent latent space
decoder
encoder
gptkbp:hasConcept variational inference
probabilistic modeling
reparameterization trick
encoder-decoder architecture
latent variable model
gptkbp:hasVariant gptkb:beta-VAE
gptkb:disentangled_VAE
conditional variational autoencoder
https://www.w3.org/2000/01/rdf-schema#label variational autoencoders
gptkbp:input data sample
gptkbp:introduced gptkb:Diederik_P._Kingma
gptkb:Max_Welling
gptkbp:introducedIn 2013
gptkbp:lossFunction reconstruction loss
KL divergence loss
gptkbp:objective gptkb:Kullback-Leibler_divergence
evidence lower bound
gptkbp:openSource gptkb:TensorFlow
gptkb:Keras
gptkb:PyTorch
gptkbp:output gptkb:organization
latent representation
gptkbp:relatedTo gptkb:generative_adversarial_networks
Bayesian inference
autoencoders
gptkbp:uses neural networks
stochastic gradient descent
gptkbp:bfsParent gptkb:GANs
gptkb:Deep_energy-based_models
gptkbp:bfsLayer 6