tf.keras.callbacks. Model Checkpoint
GPTKB entity
Statements (49)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:Model
|
gptkbp:belongs_to |
tf.keras.callbacks
|
gptkbp:can |
True or False
training metrics |
gptkbp:can_be_combined_with |
gptkb:Reduce_LROn_Plateau
gptkb:board_game Early Stopping |
gptkbp:can_be_configured_for |
callback parameters
custom callbacks |
gptkbp:can_be_used_to |
restore best model
resume training |
gptkbp:can_be_used_with |
Keras models
Tensor Flow models |
gptkbp:can_save_to |
Checkpoint format
Tensor Flow Saved Model format HDF5 format |
gptkbp:captures |
model architecture
model weights training configuration |
gptkbp:has_been_restored |
model state
|
gptkbp:has_function |
gptkb:monitor
gptkb:video_game filepath save_best_only save_weights_only verbose |
https://www.w3.org/2000/01/rdf-schema#label |
tf.keras.callbacks. Model Checkpoint
|
gptkbp:is_available_on |
gptkb:Tensor_Flow_2.0
|
gptkbp:is_compatible_with |
gptkb:Keras_Functional_models
gptkb:Keras_Sequential_models gptkb:Tensor_Flow_Estimators custom training loops |
gptkbp:is_implemented_in |
gptkb:Python
|
gptkbp:is_often_used_in |
deep learning
|
gptkbp:is_part_of |
gptkb:API
model training process model checkpointing strategy |
gptkbp:is_used_for |
model versioning
model deployment saving model during training |
gptkbp:is_used_in |
model evaluation
fit method Keras training loop |
gptkbp:monitors |
validation loss
training loss training accuracy validation accuracy |
gptkbp:bfsParent |
gptkb:Tensor_Flow
|
gptkbp:bfsLayer |
4
|