predator–prey equations

GPTKB entity

Statements (47)
Predicate Object
gptkbp:instanceOf gptkb:logic
gptkbp:alsoKnownAs gptkb:Lotka–Volterra_equations
gptkbp:application population dynamics
ecological modeling
gptkbp:assumes predator population declines exponentially in absence of prey
no immigration or emigration
predators depend on prey for food
prey population grows exponentially in absence of predators
gptkbp:category partial differential equations
mathematical modeling
population ecology
gptkbp:consistsOf two first-order nonlinear differential equations
gptkbp:describes dynamics of biological systems
gptkbp:field ecology
mathematical biology
gptkbp:form dx/dt = αx - βxy
dy/dt = δxy - γy
gptkbp:hasModel interaction between predators and prey
https://www.w3.org/2000/01/rdf-schema#label predator–prey equations
gptkbp:influenced development of modern ecological modeling
gptkbp:influencedBy chemical reaction kinetics
gptkbp:introduced gptkb:Alfred_J._Lotka
gptkb:Vito_Volterra
gptkbp:introducedIn 1920s
gptkbp:limitation assumes constant environment
assumes linear functional response
does not account for carrying capacity
gptkbp:notableExample lynx and hare populations in Canada
wolves and moose on Isle Royale
gptkbp:parameter α = natural growth rate of prey
β = predation rate coefficient
γ = natural death rate of predators
δ = efficiency of turning prey into predators
gptkbp:publishedIn gptkb:Journal_of_the_American_Chemical_Society
gptkb:Nature
gptkbp:relatedTo gptkb:competitive_Lotka–Volterra_equations
gptkb:SIR_model
Rosenzweig–MacArthur model
gptkbp:solvedBy cyclic population oscillations
gptkbp:usedIn epidemiology
fisheries management
conservation biology
theoretical ecology
gptkbp:variant x = number of prey
y = number of predators
gptkbp:bfsParent gptkb:competitive_Lotka–Volterra_equations
gptkbp:bfsLayer 7