one API Deep Neural Network Library

GPTKB entity

Statements (72)
Predicate Object
gptkbp:instance_of gptkb:Library
gptkbp:developed_by gptkb:Intel
gptkbp:enhances AI workloads
gptkbp:facilitates model deployment
AI model development
https://www.w3.org/2000/01/rdf-schema#label one API Deep Neural Network Library
gptkbp:includes matrix operations
performance benchmarks
activation functions
tensor operations
convolution operations
normalization layers
DNNLAPI
recurrent operations
gptkbp:integrates_with gptkb:Intel_one_API_Toolkits
gptkbp:is_available_on gptkb:smartphone
gptkb:operating_system
gptkbp:is_compatible_with multiple hardware architectures
gptkbp:is_designed_for performance optimization
gptkbp:is_optimized_for gptkb:Intel_architectures
gptkbp:is_used_for computer vision
natural language processing
reinforcement learning
inference
training neural networks
gptkbp:offers gptkb:document
GPU acceleration
community support
CPU acceleration
gptkbp:part_of gptkb:one_API
gptkbp:provides debugging tools
version control
user-friendly interfaces
pre-trained models
data parallelism
profiling tools
API compatibility
performance tuning options
memory management features
multi-threading capabilities
high-performance primitives
layer fusion capabilities
layered AP Is
gptkbp:released_in gptkb:2020
gptkbp:supports gptkb:Graphics_Processing_Unit
gptkb:CEO
gptkb:Py_Torch
deep learning
model evaluation
heterogeneous computing
model training
asynchronous execution
cloud deployment
custom kernels
distributed training
real-time inference
Python API
dynamic computation graphs
C++ API
model quantization
CAPI
F P16 precision
B F16 precision
multi-device execution
sparse data formats
gptkbp:used_in gptkb:academic_research
gptkb:Research_Institute
industry applications
commercial products
gptkbp:written_in gptkb:C++
gptkbp:bfsParent gptkb:Intel_One_API
gptkbp:bfsLayer 5