multi-layer perceptron

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Alpha_Go
gptkbp:allows vanishing gradient problem
exploding gradient problem
gptkbp:analyzes directed acyclic graph
feedforward network
gptkbp:can_be training data
gptkbp:coat_of_arms input layer
output layer
hidden layer
gptkbp:developed_by gptkb:Frank_Rosenblatt
gptkbp:established sigmoid
Re LU
tanh
gptkbp:has_method weights
biases
https://www.w3.org/2000/01/rdf-schema#label multi-layer perceptron
gptkbp:is_a_solution_for non-linear problems
gptkbp:is_enhanced_by early stopping
regularization
gptkbp:is_evaluated_by ROC curve
accuracy
confusion matrix
precision and recall
loss function
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Keras
gptkb:Library
gptkb:Py_Torch
gptkbp:is_optimized_for learning rate
gptkbp:is_part_of deep learning
gptkbp:is_related_to gptkb:television_channel
recurrent neural network
support vector machine
gptkbp:is_used_for gptkb:computer
regression
dropout
batch normalization
gptkbp:is_used_in gptkb:robot
financial forecasting
image recognition
natural language processing
speech recognition
supervised learning
medical diagnosis
game AI
gptkbp:requires labeled data
gptkbp:training backpropagation
gradient descent
stochastic gradient descent
mini-batch gradient descent