expectation–maximization algorithm

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
statistical analysis
gptkbp:abbreviation gptkb:EM_algorithm
gptkbp:appliesTo computer vision
natural language processing
psychometrics
speech recognition
bioinformatics
image processing
econometrics
gptkbp:category gptkb:expectation–maximization_methods
mathematical optimization
unsupervised learning
gptkbp:describedBy gptkb:Journal_of_the_Royal_Statistical_Society,_Series_B,_1977
gptkbp:field gptkb:machine_learning
data science
statistics
computational statistics
gptkbp:form gptkb:Jensen's_inequality
likelihood function
conditional expectation
https://www.w3.org/2000/01/rdf-schema#label expectation–maximization algorithm
gptkbp:input incomplete data
gptkbp:introduced gptkb:Donald_Rubin
gptkb:Nan_Laird
gptkb:Arthur_Dempster
gptkbp:introducedIn 1977
gptkbp:limitation can be slow to converge
may converge to local, not global, maximum
sensitive to initial values
gptkbp:output parameter estimates
gptkbp:property gptkb:logic
converges to local maximum
gptkbp:purpose find maximum likelihood estimates of parameters in statistical models
gptkbp:relatedTo gptkb:Baum–Welch_algorithm
gptkb:K-means_algorithm
maximum likelihood estimation
variational inference
gptkbp:step expectation step
maximization step
gptkbp:usedFor gptkb:hidden_Markov_models
gptkb:Gaussian_mixture_models
clustering
parameter estimation
mixture models
latent variable models
missing data problems
gptkbp:bfsParent gptkb:Baum–Welch_algorithm
gptkbp:bfsLayer 7