expectation–maximization algorithm
GPTKB entity
Statements (49)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:algorithm
statistical analysis |
gptkbp:abbreviation |
gptkb:EM_algorithm
|
gptkbp:appliesTo |
computer vision
natural language processing psychometrics speech recognition bioinformatics image processing econometrics |
gptkbp:category |
gptkb:expectation–maximization_methods
mathematical optimization unsupervised learning |
gptkbp:describedBy |
gptkb:Journal_of_the_Royal_Statistical_Society,_Series_B,_1977
|
gptkbp:field |
gptkb:machine_learning
data science statistics computational statistics |
gptkbp:form |
gptkb:Jensen's_inequality
likelihood function conditional expectation |
https://www.w3.org/2000/01/rdf-schema#label |
expectation–maximization algorithm
|
gptkbp:input |
incomplete data
|
gptkbp:introduced |
gptkb:Donald_Rubin
gptkb:Nan_Laird gptkb:Arthur_Dempster |
gptkbp:introducedIn |
1977
|
gptkbp:limitation |
can be slow to converge
may converge to local, not global, maximum sensitive to initial values |
gptkbp:output |
parameter estimates
|
gptkbp:property |
gptkb:logic
converges to local maximum |
gptkbp:purpose |
find maximum likelihood estimates of parameters in statistical models
|
gptkbp:relatedTo |
gptkb:Baum–Welch_algorithm
gptkb:K-means_algorithm maximum likelihood estimation variational inference |
gptkbp:step |
expectation step
maximization step |
gptkbp:usedFor |
gptkb:hidden_Markov_models
gptkb:Gaussian_mixture_models clustering parameter estimation mixture models latent variable models missing data problems |
gptkbp:bfsParent |
gptkb:Baum–Welch_algorithm
|
gptkbp:bfsLayer |
7
|