Statements (161)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:electron_microscope
scientific instrument Microscope |
gptkbp:abbreviation |
gptkb:TEM
gptkb:SEM |
gptkbp:advantage |
high resolution
detailed internal structure imaging detailed surface imaging high magnification |
gptkbp:alternativeName |
Transmission_Electron_Microscope
microscope scanning_electron_microscope transmission_electron_microscope |
gptkbp:application |
gptkb:Crystallography
Metallurgy Polymer science Cell ultrastructure analysis Nanoparticle characterization Semiconductor analysis Virus identification |
gptkbp:awarded |
Nobel Prize in Physics 1986 (Ernst Ruska)
|
gptkbp:canBe |
gptkb:field_emission_SEM
gptkb:variable_pressure_SEM energy-dispersive X-ray spectroscopy backscattered electron detector conventional SEM environmental SEM secondary electron detector |
gptkbp:cannotImage |
living cells
|
gptkbp:category |
gptkb:research_institute
electron microscopy medical imaging technique |
gptkbp:cause |
charging effects
sample damage |
gptkbp:component |
gptkb:photographer
gptkb:electron_gun condenser lens fluorescent screen objective lens Vacuum system Objective lens Projector lens Electron gun Camera system Condenser lens Fluorescent screen Specimen holder |
gptkbp:contrastsWith |
gptkb:light_microscope
|
gptkbp:detects |
transmitted electrons
Transmitted electrons |
gptkbp:distinctFrom |
gptkb:electron_microscope
Scanning Electron Microscope |
gptkbp:field |
gptkb:nanotechnology
biology geology materials science semiconductor industry forensics |
gptkbp:hasApplication |
cell biology
metallurgy virology forensics nanomaterials analysis |
gptkbp:hasComponent |
gptkb:electron_gun
detector vacuum chamber condenser lens electromagnetic lenses fluorescent screen objective lens specimen holder sample stage |
gptkbp:hasType |
gptkb:reflection_electron_microscope
gptkb:electron_microscope scanning transmission electron microscope |
https://www.w3.org/2000/01/rdf-schema#label |
electron microscope
|
gptkbp:introducedIn |
1931
|
gptkbp:inventedBy |
gptkb:Ernst_Ruska
gptkb:Manfred_von_Ardenne gptkb:Max_Knoll 1931 1937 |
gptkbp:limitation |
expensive
cannot image color limited field of view requires skilled operator sample damage possible Sample must be thin Sample must withstand vacuum |
gptkbp:magnificationRange |
up to 10,000,000x
10x to 1,000,000x Up to 10,000,000x |
gptkbp:obtainedFrom |
Atomic resolution
|
gptkbp:operatesIn |
gptkb:vacuum
high voltage |
gptkbp:produces |
high-resolution images
3D surface images elemental maps |
gptkbp:provides |
greater resolution than light microscope
|
gptkbp:relatedTo |
gptkb:focused_ion_beam
gptkb:electron_microscope X-ray microscope optical microscope Atomic force microscope Light microscope |
gptkbp:requires |
gptkb:vacuum
vibration isolation high voltage power supply electromagnetic lenses electron source trained operator Skilled operator vacuum environment cooling system sample preparation operator training conductive samples sample mounting ultra-thin samples Vibration isolation High voltage power supply Ultrathin samples |
gptkbp:resolution |
less than 1 nanometer
sub-nanometer up to 1 nanometer up to 2 million times Less than 1 nanometer |
gptkbp:samplePreparation |
musical composition
requires dehydration requires staining requires thin sectioning coating with gold or carbon Staining with heavy metals |
gptkbp:signature |
black and white
crystals viruses nanoparticles internal structure of cells 2D image |
gptkbp:subspecies |
Analytical TEM
Cryo-TEM High-resolution TEM Scanning Transmission Electron Microscope |
gptkbp:type |
Electron microscope
|
gptkbp:usedFor |
material analysis
nanotechnology research Biological research high-resolution imaging biological studies imaging at nanometer scale imaging surfaces Imaging at nanometer scale Material science research |
gptkbp:usedIn |
gptkb:nanotechnology
biology materials science semiconductor industry |
gptkbp:uses |
electron beam
Electron beam |
gptkbp:bfsParent |
gptkb:Ernst_Ruska
|
gptkbp:bfsLayer |
4
|