arXiv:2106.09685

GPTKB entity

Statements (25)
Predicate Object
gptkbp:instanceOf gptkb:academic_journal
gptkbp:allows We study scaling properties of Vision Transformers (ViTs) and show that, with sufficient data and compute, they outperform convolutional neural networks on a range of visual recognition tasks.
gptkbp:arXivID 2106.09685
gptkbp:author gptkb:Cordelia_Schmid
gptkb:Alexander_Kolesnikov
gptkb:Lucas_Beyer
gptkb:Neil_Houlsby
gptkb:Thomas_Unterthiner
gptkb:Xiaohua_Zhai
gptkb:Andrew_Brock
Joao Carreira
Aarush Gupta
Olivier J. Hénaff
Philip H. S. Torr
Shelhamer
https://www.w3.org/2000/01/rdf-schema#label arXiv:2106.09685
gptkbp:language English
gptkbp:license CC BY 4.0
gptkbp:publicationDate 2021-06-17
gptkbp:subjectArea gptkb:Machine_Learning
gptkb:Computer_Vision_and_Pattern_Recognition
gptkbp:title Scaling Vision Transformers
gptkbp:url https://arxiv.org/abs/2106.09685
gptkbp:bfsParent gptkb:LoRA
gptkbp:bfsLayer 7