YOLOv5l

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:cosmic_ray_detector
gptkbp:application gptkb:robotics
Autonomous vehicles
Augmented reality
Surveillance systems
Retail analytics
gptkbp:architecture gptkb:neural_networks
gptkbp:community_support Active Git Hub repository
gptkbp:developed_by gptkb:Ultralytics
gptkbp:evaluates Precision
Recall
F1 score
Benchmarking against other models
Real-world performance testing
gptkbp:features Speed and accuracy
gptkbp:has_documentation Available on Git Hub
https://www.w3.org/2000/01/rdf-schema#label YOLOv5l
gptkbp:hyperparameters Configurable
gptkbp:input_layer Image input layer
gptkbp:input_output gptkb:Images
Bounding boxes and class probabilities
640x640
Class labels
JSON or CSV
gptkbp:is_a_framework_for gptkb:Py_Torch
gptkbp:language gptkb:Python
gptkbp:latest_version v5.0
gptkbp:license GPL-3.0
gptkbp:losses Cross-entropy loss
Io U loss
gptkbp:model gptkb:YOLOv5m
gptkb:YOLOv5s
gptkb:YOLOv5x
Varies by configuration
Single-stage detector
YOLOv5n
gptkbp:output_layer Bounding box regression
Class prediction
gptkbp:performance m AP (mean Average Precision)
gptkbp:predecessor gptkb:YOLOv4
gptkbp:provides_information_on gptkb:COCO_dataset
Custom datasets supported
gptkbp:release_date gptkb:2020
gptkbp:successor gptkb:YOLOv5
gptkbp:supports GPU acceleration
FP16 precision
Tensor RT optimization
Multi-class detection
gptkbp:training Varies by hardware
End-to-end training
gptkbp:training_programs Local or cloud-based
Ultralytics YOLOv5 repository
gptkbp:uses Transfer learning
Real-time object detection
Data augmentation techniques
gptkbp:bfsParent gptkb:YOLO_family
gptkbp:bfsLayer 7