|
gptkbp:instanceOf
|
gptkb:organization
|
|
gptkbp:application
|
question answering
image understanding
|
|
gptkbp:challenge
|
VQA Challenge
|
|
gptkbp:firstReleased
|
2015
|
|
gptkbp:hasBenchmark
|
VQA v1
VQA v2
VQA-CP
|
|
gptkbp:hasEvaluationMetric
|
accuracy
consensus score
|
|
gptkbp:hasTaskType
|
multiple choice
open-ended
|
|
gptkbp:language
|
English
|
|
gptkbp:memiliki_tugas
|
answering questions about images
|
|
gptkbp:organizer
|
gptkb:Georgia_Institute_of_Technology
gptkb:Virginia_Tech
gptkb:Allen_Institute_for_AI
|
|
gptkbp:paperSizeSupported
|
VQA: Visual Question Answering (Antol et al., ICCV 2015)
|
|
gptkbp:relatedTo
|
gptkb:artificial_intelligence
computer vision
natural language processing
|
|
gptkbp:standsFor
|
gptkb:Visual_Question_Answering
|
|
gptkbp:trainer
|
VQA dataset
|
|
gptkbp:usedIn
|
deep learning
multimodal AI research
|
|
gptkbp:website
|
https://visualqa.org/
|
|
gptkbp:bfsParent
|
gptkb:Visual_Question_Answering
gptkb:Vintners_Quality_Alliance_(VQA)
gptkb:Vintners_Quality_Alliance
gptkb:Vintners_Quality_Alliance_British_Columbia
gptkb:Bootstrapped_Language_Image_Pretraining
gptkb:ViLT
gptkb:VQA_(Canada)
|
|
gptkbp:bfsLayer
|
8
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
VQA
|