VGG family

GPTKB entity

Statements (65)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:achieved_top5_accuracy 89.8% on Image Net
gptkbp:architecture gptkb:Deep_Learning
gptkbp:coat_of_arms Convolutional layers
Fully connected layers
Pooling layers
gptkbp:developed_by gptkb:Visual_Geometry_Group
gptkbp:first_introduced gptkb:2014
gptkbp:has_function 138 million
https://www.w3.org/2000/01/rdf-schema#label VGG family
gptkbp:includes gptkb:VGG16
gptkb:VGG19
gptkbp:influenced gptkb:Res_Net
gptkbp:influenced_by gptkb:Le_Net
gptkbp:is_based_on Alex Net architecture
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:CIFAR-100
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_known_for High accuracy
Simplicity and depth
Layer-wise training
Large model size
gptkbp:is_part_of Deep Learning frameworks
Neural network architectures
Computer Vision models
gptkbp:is_popular_in gptkb:Computer_Vision
Academic research
Industry applications
gptkbp:is_related_to gptkb:cloud_computing
gptkb:Dropout
Backpropagation
Performance metrics
Embedded systems
Data augmentation
Real-time applications
Transfer learning
Hyperparameter tuning
Model evaluation
Fine-tuning
Optimization algorithms
Regularization techniques
Model deployment
Gradient descent
Batch normalization
Training datasets
Activation functions
Loss functions
Image preprocessing
Convolutional layers
Feature maps
Pooling operations
gptkbp:is_trained_in gptkb:Image_Net_dataset
gptkbp:is_used_for Image segmentation
Feature extraction
Object detection
Face recognition
Style transfer
gptkbp:is_used_in gptkb:stage_adaptation
gptkbp:notable_for Image classification
gptkbp:performance gptkb:Image_Net_competition
71.3% on Image Net
gptkbp:uses Re LU activation function
gptkbp:bfsParent gptkb:VGG16
gptkbp:bfsLayer 6