VGG Networks

GPTKB entity

Statements (57)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:application gptkb:Augmented_Reality
gptkb:art
gptkb:Autonomous_Vehicles
gptkb:sports_team
gptkb:robotics
Anomaly Detection
Facial Recognition
Medical Imaging
Agricultural Monitoring
Emotion Recognition
Smart Cities
Video Analysis
Wildlife Conservation
Retail Analytics
Gesture Recognition
Scene Understanding
Art Generation
Security Surveillance
Text Recognition
gptkbp:architecture gptkb:Deep_Learning
gptkbp:coat_of_arms 16 or 19
gptkbp:dataset_used_for_training gptkb:Image_Net
gptkbp:developed_by gptkb:Visual_Geometry_Group
gptkbp:has_achieved Top-5 accuracy on Image Net
https://www.w3.org/2000/01/rdf-schema#label VGG Networks
gptkbp:influenced_by gptkb:Goog_Le_Net
gptkb:Alex_Net
gptkbp:input_output 224x224 pixels
gptkbp:is_a_framework_for gptkb:Tensor_Flow
gptkb:Keras
gptkb:Py_Torch
gptkbp:is_popular_in gptkb:Computer_Vision
Deep Learning Community
gptkbp:notable_applications Object Detection
Image Segmentation
Feature Extraction
gptkbp:notable_for Image Classification
gptkbp:notable_traits Depth of network
Small receptive fields
Stacked convolutional layers
Uniform architecture
gptkbp:performance gptkb:Loss
Accuracy
gptkbp:pretrained_models_available gptkb:Yes
gptkbp:requires High computational power
Large dataset
gptkbp:successor gptkb:VGG16
gptkb:VGG19
gptkbp:training Long
gptkbp:uses Max Pooling
Dropout for regularization
Re LU activation function
Softmax layer
gptkbp:year_established gptkb:2014
gptkbp:bfsParent gptkb:Res_Ne_Xt
gptkbp:bfsLayer 6