Uniform Manifold Approximation and Projection
GPTKB entity
Statements (40)
Predicate | Object |
---|---|
gptkbp:instanceOf |
dimensionality reduction algorithm
|
gptkbp:abbreviation |
gptkb:UMAP
|
gptkbp:application |
clustering
feature engineering visualizing high-dimensional data |
gptkbp:arXivID |
1802.03426
|
gptkbp:author |
Leland McInnes, John Healy, James Melville
|
gptkbp:citation |
2018
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction |
gptkbp:developer |
gptkb:James_Melville
gptkb:Leland_McInnes gptkb:John_Healy |
gptkbp:feature |
scalable to large datasets
fast runtime compared to t-SNE preserves local and global structure supports supervised and unsupervised learning |
gptkbp:field |
gptkb:machine_learning
gptkb:data_visualization manifold learning |
https://www.w3.org/2000/01/rdf-schema#label |
Uniform Manifold Approximation and Projection
|
gptkbp:implementationLibrary |
gptkb:umap-learn
|
gptkbp:implementedIn |
gptkb:Python
|
gptkbp:input |
high-dimensional data
|
gptkbp:license |
gptkb:BSD_license
|
gptkbp:openSource |
true
|
gptkbp:output |
low-dimensional embedding
|
gptkbp:parameter |
gptkb:Metric
min_dist n_components n_neighbors |
gptkbp:publicationYear |
2018
|
gptkbp:relatedTo |
gptkb:t-SNE
Principal Component Analysis |
gptkbp:supportsAlgorithm |
nonlinear dimensionality reduction
|
gptkbp:uses |
stochastic gradient descent
nearest neighbor graph |
gptkbp:website |
https://umap-learn.readthedocs.io/en/latest/
|
gptkbp:bfsParent |
gptkb:UMAP
gptkb:t-distributed_Stochastic_Neighbor_Embedding |
gptkbp:bfsLayer |
7
|