Uniform Manifold Approximation and Projection

GPTKB entity

Statements (40)
Predicate Object
gptkbp:instanceOf dimensionality reduction algorithm
gptkbp:abbreviation gptkb:UMAP
gptkbp:application clustering
feature engineering
visualizing high-dimensional data
gptkbp:arXivID 1802.03426
gptkbp:author Leland McInnes, John Healy, James Melville
gptkbp:citation 2018
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
gptkbp:developer gptkb:James_Melville
gptkb:Leland_McInnes
gptkb:John_Healy
gptkbp:feature scalable to large datasets
fast runtime compared to t-SNE
preserves local and global structure
supports supervised and unsupervised learning
gptkbp:field gptkb:machine_learning
gptkb:data_visualization
manifold learning
https://www.w3.org/2000/01/rdf-schema#label Uniform Manifold Approximation and Projection
gptkbp:implementationLibrary gptkb:umap-learn
gptkbp:implementedIn gptkb:Python
gptkbp:input high-dimensional data
gptkbp:license gptkb:BSD_license
gptkbp:openSource true
gptkbp:output low-dimensional embedding
gptkbp:parameter gptkb:Metric
min_dist
n_components
n_neighbors
gptkbp:publicationYear 2018
gptkbp:relatedTo gptkb:t-SNE
Principal Component Analysis
gptkbp:supportsAlgorithm nonlinear dimensionality reduction
gptkbp:uses stochastic gradient descent
nearest neighbor graph
gptkbp:website https://umap-learn.readthedocs.io/en/latest/
gptkbp:bfsParent gptkb:UMAP
gptkb:t-distributed_Stochastic_Neighbor_Embedding
gptkbp:bfsLayer 7