Uncertainty in Deep Learning

GPTKB entity

Statements (28)
Predicate Object
gptkbp:instanceOf research
gptkbp:application natural language processing
autonomous driving
medical imaging
gptkbp:goal detect out-of-distribution data
enable risk-aware decision making
improve model robustness
quantify model confidence
gptkbp:hasType aleatoric uncertainty
epistemic uncertainty
https://www.w3.org/2000/01/rdf-schema#label Uncertainty in Deep Learning
gptkbp:importantConference gptkb:ICLR
gptkb:ICML
gptkb:NeurIPS
gptkbp:importantPaper What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? (Alex Kendall, Yarin Gal, 2017)
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning (Yarin Gal, Zoubin Ghahramani, 2016)
gptkbp:method gptkb:Variational_inference
Bayesian neural networks
Ensemble methods
Monte Carlo dropout
Test-time data augmentation
gptkbp:relatedTo gptkb:machine_learning
deep learning
probabilistic modeling
gptkbp:studiedBy gptkb:Zoubin_Ghahramani
gptkb:Yarin_Gal
gptkbp:bfsParent gptkb:Yarin_Gal
gptkbp:bfsLayer 8