Uber ML infrastructure

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf machine learning infrastructure
gptkbp:deployment 2016
gptkbp:developedBy gptkb:Uber
gptkbp:documentation https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/ludwig/
https://eng.uber.com/petastorm/
https://eng.uber.com/horovod-open-source-distributed-deep-learning/
gptkbp:enables A/B testing
model monitoring
batch inference
model versioning
real-time inference
feature store
automated model retraining
scalable distributed training
https://www.w3.org/2000/01/rdf-schema#label Uber ML infrastructure
gptkbp:includes gptkb:Michelangelo
gptkb:Horovod
gptkbp:integratesWith gptkb:TensorFlow
gptkb:Apache_Spark
gptkb:Docker
gptkb:Kubernetes
gptkb:PyTorch
gptkbp:location gptkb:San_Francisco,_California
gptkbp:openSourcedComponent gptkb:Ludwig
gptkb:Horovod
Petastorm
gptkbp:purpose support machine learning workflows at Uber
gptkbp:scalesTo millions of predictions per second
thousands of models
gptkbp:supports online learning
feature engineering
hyperparameter tuning
data labeling
model deployment
data validation
model monitoring
model validation
model explainability
model training
offline learning
gptkbp:usedBy gptkb:Uber_Eats
gptkb:Uber_Freight
gptkb:Uber_Rides
gptkbp:usedFor fraud detection
pricing optimization
ETA prediction
matching riders and drivers
gptkbp:bfsParent gptkb:Michelangelo_Feature_Store
gptkbp:bfsLayer 8