Tsetlin machine

GPTKB entity

Properties (45)
Predicate Object
gptkbp:instanceOf software
gptkbp:basedOn Tsetlin automata
gptkbp:competesWith deep learning models
gptkbp:completed high accuracy
gptkbp:electionYear real-time applications
gptkbp:evaluates binary classification
gptkbp:hasPrograms natural language processing
https://www.w3.org/2000/01/rdf-schema#label Tsetlin machine
gptkbp:influenced Markov processes
gptkbp:inspiration game theory
gptkbp:introduced 2018
gptkbp:is_a discrete model
gptkbp:is_a_model_for learns from examples.
gptkbp:is_a_platform_for learning from data
gptkbp:is_a_resource_for large datasets
gptkbp:is_a_subject_of computational learning theory
gptkbp:is_a_time_for feature selection
pattern recognition
gptkbp:is_a_tool_for data mining
gptkbp:is_characterized_by simple rules
gptkbp:is_designed_to simplify model interpretation
gptkbp:is_evaluated_by benchmark datasets
gptkbp:is_known_for low computational cost
gptkbp:is_part_of ensemble methods
the field of machine learning
gptkbp:is_recognized_for gptkb:C++
Python
its simplicity
gptkbp:is_studied_in artificial intelligence
gptkbp:is_used_in financial forecasting
academic papers
classification tasks
image classification
gptkbp:isFacilitatedBy noisy data
gptkbp:isUsedFor other algorithms
gptkbp:performance big data
gptkbp:produces gptkb:Ole-Johan_Dahl
gptkbp:provides interpretable models
gptkbp:providesTrainingFor reinforcement learning
gptkbp:related_to decision trees
gptkbp:relatedTo support vector machines
gptkbp:safety_features overfitting
gptkbp:suitableFor online learning
medical diagnosis
gptkbp:utilizes Boolean features