Tiny YOLOv3-15l

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:cosmic_ray_detector
gptkbp:application gptkb:Augmented_Reality
gptkb:Autonomous_Vehicles
gptkb:robotics
Surveillance Systems
gptkbp:architecture 15 layers
gptkbp:based_on gptkb:YOLOv3
gptkbp:community_support Active community
gptkbp:designed_for Real-time Object Detection
gptkbp:developed_by gptkb:Joseph_Redmon
gptkbp:evaluates m AP (mean Average Precision)
gptkbp:feature Low latency
Modular design
User-friendly API
Scalable architecture
High FPS
Visualization tools available
Supports multi-threading
Easy to deploy
Lightweight model
Integration with Io T devices
Compatible with Py Torch
Compatible with Tensor Flow
Integration with Mobile Applications
Integration with Flask
Customizable architecture
Integration with Django
Integration with Edge Computing
Integration with Open CV
Integration with ROS
Integration with Web Applications
Pre-trained weights available
Supports CPU inference
Supports GPU acceleration
Supports batch processing
Supports multiple classes
Supports transfer learning
https://www.w3.org/2000/01/rdf-schema#label Tiny YOLOv3-15l
gptkbp:input_output 416x416
Bounding boxes and class probabilities
gptkbp:is_a_framework_for gptkb:Darknet
gptkbp:is_compared_to Less accurate than YOLOv3
More efficient than YOLOv3
gptkbp:language gptkb:C
gptkb:Python
gptkb:CUDA
gptkbp:latest_version 1.0
gptkbp:license gptkb:Open_Source
gptkbp:performance gptkb:High
Faster than YOLOv3
gptkbp:platform Cross-platform
gptkbp:provides_information_on gptkb:COCO_Dataset
gptkbp:release_date gptkb:2019
gptkbp:speed Real-time processing
gptkbp:tutorials Numerous online resources
gptkbp:uses gptkb:neural_networks
gptkbp:bfsParent gptkb:Tiny_YOLOv3
gptkbp:bfsLayer 7