Tensor Flow Privacy

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:Library
gptkbp:aims_to protect user data
reduce bias in models
gptkbp:based_on gptkb:Graphics_Processing_Unit
gptkbp:developed_by gptkb:Job_Search_Engine
gptkbp:enables model training with privacy guarantees
gptkbp:has gptkb:document
user community
https://www.w3.org/2000/01/rdf-schema#label Tensor Flow Privacy
gptkbp:includes evaluation metrics
training algorithms
gptkbp:integrates_with gptkb:Tensor_Flow_Federated
gptkbp:is flexible
open-source
scalable
widely used
community-driven
extensible
used in research
actively maintained
compatible with various hardware
used in industry
used for collaborative learning
part of AI ethics discussions
part of AI safety research
part of Tensor Flow ecosystem
part of academic courses
part of data science toolkits
part of machine learning frameworks
part of online learning platforms
part of open-source projects
part of privacy research initiatives
part of workshops and conferences
related to CCPA compliance
related to GDPR compliance
related to data privacy laws
used for privacy-preserving machine learning
used for secure data sharing
used for sensitive data analysis
gptkbp:is_available_on gptkb:archive
gptkbp:is_compatible_with gptkb:Graphics_Processing_Unit
gptkbp:is_designed_for federated learning
gptkbp:is_used_for natural language processing
time series analysis
image classification
differential privacy
gptkbp:offers differentially private SGD
gptkbp:provides tutorials
API for privacy
privacy-preserving techniques
gptkbp:released_in gptkb:2019
gptkbp:supports gptkb:software_framework
gptkb:Tensor_Flow_2.x
gptkbp:utilizes noisy gradients
secure aggregation
gptkbp:written_in gptkb:Library
gptkbp:bfsParent gptkb:Graphics_Processing_Unit
gptkbp:bfsLayer 3