Statements (46)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:Graphics_Processing_Unit
|
gptkbp:architect |
gptkb:ASIC
|
gptkbp:availableIn |
gptkb:Google_Cloud
|
gptkbp:competesWith |
NVIDIA GPUs
|
gptkbp:designedBy |
gptkb:Google
|
gptkbp:enables |
faster training
faster inference |
gptkbp:features |
matrix multiplication
|
https://www.w3.org/2000/01/rdf-schema#label |
TPU v3
|
gptkbp:includes |
high-bandwidth memory
|
gptkbp:isAvailableIn |
gptkb:TPU_Pods
multiple regions |
gptkbp:isCompatibleWith |
Docker
Kubernetes |
gptkbp:isDesignedFor |
high-performance computing
|
gptkbp:isIntegratedWith |
gptkb:Google_Cloud_services
|
gptkbp:isKnownFor |
energy efficiency
high performance cost-effectiveness |
gptkbp:isOptimizedFor |
large-scale models
|
gptkbp:isPartOf |
AI research projects
Google's_AI_hardware_offerings Google_AI_infrastructure |
gptkbp:isSuitableFor |
to multiple chips
|
gptkbp:isSupportedBy |
Google's_software_ecosystem
|
gptkbp:isUsedBy |
large enterprises
research institutions startups |
gptkbp:isUsedFor |
computer vision
natural language processing reinforcement learning |
gptkbp:isUsedIn |
AI model training
AI model deployment |
gptkbp:offers |
low latency
|
gptkbp:performance |
deep learning
up to 420 teraflops |
gptkbp:provides |
hardware acceleration
high throughput |
gptkbp:RAM |
up to 128 GB
|
gptkbp:releasedIn |
2018
|
gptkbp:successor |
gptkb:TPU_v4
|
gptkbp:supports |
gptkb:bfloat16
TensorFlow float32 |
gptkbp:usedIn |
machine learning
|
gptkbp:utilizes |
systolic array architecture
|