TPU v3

GPTKB entity

Statements (46)
Predicate Object
gptkbp:instanceOf gptkb:Graphics_Processing_Unit
gptkbp:architect gptkb:ASIC
gptkbp:availableIn gptkb:Google_Cloud
gptkbp:competesWith NVIDIA GPUs
gptkbp:designedBy gptkb:Google
gptkbp:enables faster training
faster inference
gptkbp:features matrix multiplication
https://www.w3.org/2000/01/rdf-schema#label TPU v3
gptkbp:includes high-bandwidth memory
gptkbp:isAvailableIn gptkb:TPU_Pods
multiple regions
gptkbp:isCompatibleWith Docker
Kubernetes
gptkbp:isDesignedFor high-performance computing
gptkbp:isIntegratedWith gptkb:Google_Cloud_services
gptkbp:isKnownFor energy efficiency
high performance
cost-effectiveness
gptkbp:isOptimizedFor large-scale models
gptkbp:isPartOf AI research projects
Google's_AI_hardware_offerings
Google_AI_infrastructure
gptkbp:isSuitableFor to multiple chips
gptkbp:isSupportedBy Google's_software_ecosystem
gptkbp:isUsedBy large enterprises
research institutions
startups
gptkbp:isUsedFor computer vision
natural language processing
reinforcement learning
gptkbp:isUsedIn AI model training
AI model deployment
gptkbp:offers low latency
gptkbp:performance deep learning
up to 420 teraflops
gptkbp:provides hardware acceleration
high throughput
gptkbp:RAM up to 128 GB
gptkbp:releasedIn 2018
gptkbp:successor gptkb:TPU_v4
gptkbp:supports gptkb:bfloat16
TensorFlow
float32
gptkbp:usedIn machine learning
gptkbp:utilizes systolic array architecture