Static State Estimation in Electric Power Systems

GPTKB entity

Statements (42)
Predicate Object
gptkbp:instanceOf scientific theory
gptkbp:application energy management systems
power system control
power system operation
power system planning
gptkbp:appliesTo electric power systems
gptkbp:citation gptkb:A._Monticelli,_State_Estimation_in_Electric_Power_Systems:_A_Generalized_Approach
A. Abur and A. G. Expósito, Power System State Estimation: Theory and Implementation
gptkbp:class gptkb:Weighted_Least_Squares_Estimation
gptkbp:developedBy 1970s
gptkbp:enables anomaly detection
real-time monitoring
bad data detection
network security analysis
gptkbp:field Electrical Engineering
gptkbp:form nonlinear equations
linearized models
https://www.w3.org/2000/01/rdf-schema#label Static State Estimation in Electric Power Systems
gptkbp:improves system security
system reliability
system efficiency
gptkbp:input bus voltage angles
bus voltage magnitudes
power flows
power injections
gptkbp:keyChallenge incomplete data
measurement errors
network observability
gptkbp:output estimated system state
gptkbp:purpose determine the most probable state of a power system
gptkbp:relatedTo gptkb:Dynamic_State_Estimation
gptkb:Phasor_Measurement_Units_(PMU)
gptkb:Supervisory_Control_and_Data_Acquisition_(SCADA)
gptkbp:supportsAlgorithm gptkb:Newton-Raphson_method
gptkb:Gauss-Newton_method
Kalman filter (for dynamic extension)
Least Absolute Value estimation
gptkbp:uses mathematical models
optimization techniques
measurement data
gptkbp:bfsParent gptkb:Charles_H._Schweppe
gptkbp:bfsLayer 6