Squeeze Net 1.1

GPTKB entity

Statements (56)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 6
gptkbp:bfsParent gptkb:Squeeze_Net
gptkbp:architectural_style Lightweight Model
gptkbp:based_on Alex Net architecture
gptkbp:developed_by gptkb:Deep_Scale
gptkbp:established Re LU
https://www.w3.org/2000/01/rdf-schema#label Squeeze Net 1.1
gptkbp:is_compatible_with gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_designed_for Mobile and embedded vision applications
gptkbp:is_evaluated_by gptkb:CIFAR-10
gptkb:Pascal_VOC
gptkb:COCO_dataset
gptkb:CIFAR-100
Action recognition tasks
Face recognition tasks
Gesture recognition tasks
Scene recognition tasks
gptkbp:is_implemented_in gptkb:Keras
MX Net
gptkbp:is_known_for Energy efficiency
Low latency
Real-time performance
High accuracy with fewer parameters
gptkbp:is_optimized_for Low memory usage
gptkbp:is_part_of gptkb:Squeeze_Net_family
gptkbp:is_used_in gptkb:robot
gptkb:computer
gptkb:helicopter
Autonomous vehicles
Industrial automation
Mobile apps
Security surveillance
Augmented reality applications
Virtual reality applications
Wearable devices
Traffic monitoring
Healthcare applications
Agricultural monitoring
Smart cameras
Real-time image classification
Augmented reality glasses
Object detection tasks
Image segmentation tasks
gptkbp:orbital_period 1.24 million
gptkbp:performance Model compression techniques
Top-5 accuracy of 57.5% on Image Net
gptkbp:predecessor gptkb:Squeeze_Net_1.0
gptkbp:release_date gptkb:2016
gptkbp:successor gptkb:Squeeze_Net_1.2
gptkbp:supports gptkb:streaming_service
gptkbp:training gptkb:Image_Net_dataset
gptkbp:uses Global Average Pooling
Fire modules
gptkbp:written_in gptkb:Library