Sequences, Time Series and Prediction

GPTKB entity

Statements (23)
Predicate Object
gptkbp:instanceOf Deep Learning Course Module
gptkbp:availableOn Yes
gptkbp:focusesOn gptkb:Natural_Language_Processing
Recurrent Neural Networks
Time Series Prediction
Gated Recurrent Units (GRU)
Long Short-Term Memory (LSTM)
gptkbp:hasAssignments Yes
gptkbp:hasQuizzes Yes
gptkbp:hasVideoLectures Yes
https://www.w3.org/2000/01/rdf-schema#label Sequences, Time Series and Prediction
gptkbp:language English
gptkbp:notableFaculty gptkb:Andrew_Ng
gptkbp:offeredBy gptkb:Coursera
gptkbp:partOf gptkb:Deep_Learning_Specialization
gptkbp:targetAudience Data scientists
Deep learning practitioners
gptkbp:teaches How to apply deep learning to audio, text, and other sequence data
How to build sequence models
How to use LSTMs and GRUs
How to use RNNs for time series data
gptkbp:bfsParent gptkb:TensorFlow_Developer_Professional_Certificate
gptkbp:bfsLayer 8