Sage Maker Neo

GPTKB entity

Statements (63)
Predicate Object
gptkbp:instance_of gptkb:AI_technology
gptkbp:available_at gptkb:AWS_SDKs
gptkb:AWS_Management_Console
gptkb:AWS_CLI
gptkbp:can_be_used_for edge devices
real-time inference
batch inference
gptkbp:developed_by gptkb:Amazon_Web_Services
gptkbp:enables deployment of machine learning models
https://www.w3.org/2000/01/rdf-schema#label Sage Maker Neo
gptkbp:improves gptkb:resource_utilization
gptkbp:integrates_with gptkb:Sage_Maker
gptkbp:is_available_in multiple regions
gptkbp:is_compatible_with gptkb:Kubernetes
gptkb:AWS_Lambda
gptkb:Bermuda
gptkb:AWS_Io_T
Docker containers
gptkbp:is_designed_for gptkb:developers
gptkbp:is_documented_in AWS documentation
gptkbp:is_integrated_with gptkb:Amazon_Cloud_Watch
gptkb:Amazon_S3
gptkb:Amazon_ECR
CI/ CD pipelines
gptkbp:is_optimized_for cloud environments
edge computing
machine learning models
deep learning models
inference performance
gptkbp:is_part_of gptkb:AWS_Sage_Maker
AWS ecosystem
AWS AI services
AI/ ML solutions
gptkbp:is_scalable large datasets
gptkbp:is_supported_by AWS support
gptkbp:is_used_by data scientists
machine learning engineers
gptkbp:is_used_for model evaluation
model training
model lifecycle management
model deployment strategies
gptkbp:is_used_in production environments
gptkbp:offers customization options
multi-platform support
gptkbp:provides API access
scalability
user-friendly interface
model monitoring
model deployment capabilities
automatic model compilation
gptkbp:reduces latency
costs
gptkbp:security data handling
gptkbp:supports gptkb:Tensor_Flow
gptkb:MXNet
gptkb:Py_Torch
gptkb:Oni
model versioning
model optimization
gptkbp:works_with multiple frameworks
gptkbp:bfsParent gptkb:AWS_Sage_Maker
gptkb:Sage
gptkbp:bfsLayer 5