Statements (61)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:Amazon_Web_Services
|
gptkbp:analyzes |
input data
predictions |
gptkbp:automated |
report generation
|
gptkbp:can_be_configured_for |
notifications
alerting |
gptkbp:can_be_used_to |
reduce operational risks
improve model accuracy |
gptkbp:can_be_used_with |
batch transform jobs
endpoint deployments |
gptkbp:can_create |
gptkb:reports
dashboards alerts |
gptkbp:can_detect |
concept drift
data drift |
gptkbp:can_provide |
insights
performance metrics regulatory compliance |
gptkbp:enables |
automated monitoring
|
gptkbp:facilitates |
model governance
|
https://www.w3.org/2000/01/rdf-schema#label |
Sage Maker Model Monitor
|
gptkbp:integrates_with |
gptkb:Amazon_Redshift
gptkb:AWS_Glue gptkb:Amazon_S3 gptkb:AWS_Lambda gptkb:Sage |
gptkbp:is_accessible_by |
gptkb:AWS_SDKs
gptkb:AWS_Management_Console gptkb:AWS_CLI |
gptkbp:is_available_in |
multiple AWS regions
|
gptkbp:is_compatible_with |
various data sources
|
gptkbp:is_designed_for |
production models
|
gptkbp:is_essential_for |
AI model deployment
|
gptkbp:is_managed_by |
gptkb:AWS
|
gptkbp:is_optimized_for |
cloud environments
|
gptkbp:is_part_of |
AWS ecosystem
machine learning lifecycle MLOps |
gptkbp:is_scalable |
large datasets
|
gptkbp:is_used_by |
data scientists
machine learning engineers |
gptkbp:is_used_for |
AI applications
|
gptkbp:is_user_friendly |
non-technical users
|
gptkbp:monitors |
multiple models
|
gptkbp:notifications |
anomalies
|
gptkbp:provides |
data visualization
real-time monitoring visualization tools model performance monitoring |
gptkbp:requires |
Sage Maker training jobs
|
gptkbp:support |
model evaluation
model retraining model comparison A/ B testing |
gptkbp:supports |
custom metrics
data quality monitoring model bias detection |
gptkbp:uses |
Cloud Watch for monitoring
|
gptkbp:bfsParent |
gptkb:AWS_Sage_Maker
gptkb:Sage |
gptkbp:bfsLayer |
5
|