Sage Maker Model Monitor

GPTKB entity

Statements (60)
Predicate Object
gptkbp:instance_of gptkb:railway_line
gptkbp:bfsLayer 3
gptkbp:bfsParent gptkb:temple
gptkbp:analyzes input data
predictions
gptkbp:can_be_used_with batch transform jobs
endpoint deployments
gptkbp:can_create gptkb:report
dashboards
alerts
gptkbp:can_provide insights
performance metrics
regulatory compliance
gptkbp:enables automated monitoring
gptkbp:facilitates model governance
https://www.w3.org/2000/01/rdf-schema#label Sage Maker Model Monitor
gptkbp:integrates_with gptkb:aircraft
gptkb:temple
gptkb:Amazon_Redshift
gptkb:Amazon_S3
gptkb:seal
gptkbp:is_a_tool_for report generation
gptkbp:is_accessible_by gptkb:AWS_Management_Console
AWSCLI
AWSSD Ks
gptkbp:is_available_in multiple AWS regions
gptkbp:is_compatible_with various data sources
gptkbp:is_designed_for production models
gptkbp:is_essential_for AI model deployment
gptkbp:is_optimized_for cloud environments
gptkbp:is_part_of AWS ecosystem
machine learning lifecycle
ML Ops
gptkbp:is_scalable large datasets
gptkbp:is_used_by data scientists
machine learning engineers
gptkbp:is_used_for AI applications
reduce operational risks
improve model accuracy
gptkbp:managed_by gptkb:AWS
gptkbp:monitors multiple models
gptkbp:notifications anomalies
gptkbp:provides data visualization
real-time monitoring
visualization tools
model performance monitoring
gptkbp:recognizes concept drift
data drift
gptkbp:requires Sage Maker training jobs
gptkbp:setting notifications
alerting
gptkbp:supports model evaluation
custom metrics
model retraining
data quality monitoring
model comparison
A/ B testing
model bias detection
gptkbp:user_experience non-technical users
gptkbp:uses Cloud Watch for monitoring