Reservoir Computing

GPTKB entity

Statements (46)
Predicate Object
gptkbp:instanceOf Computational paradigm
gptkbp:advantage Efficient training
Handles temporal data
gptkbp:application gptkb:robot
gptkb:signal_processing
Control systems
Speech recognition
Time series prediction
gptkbp:component gptkb:reservoir
Input layer
Readout layer
gptkbp:feature gptkb:Nonlinear_dynamics
Fixed recurrent network
Low training complexity
Trains only output weights
gptkbp:field gptkb:artificial_intelligence
Machine learning
Neural networks
https://www.w3.org/2000/01/rdf-schema#label Reservoir Computing
gptkbp:inspiredBy Biological neural networks
gptkbp:introducedIn Early 2000s
gptkbp:limitation Performance depends on reservoir properties
Reservoir design is nontrivial
gptkbp:notableContributor gptkb:Herbert_Jaeger
gptkb:Wolfgang_Maass
gptkbp:notableModel gptkb:Echo_State_Network
Liquid State Machine
gptkbp:notablePublication The 'Echo State' Approach to Analysing and Training Recurrent Neural Networks (Jaeger, 2001)
A Model for Real-Time Computation in Generic Neural Microcircuits (Maass et al., 2002)
gptkbp:relatedConcept Spiking neural networks
Backpropagation through time
Computational neuroscience
Feedforward neural networks
Nonlinear system identification
Temporal processing
gptkbp:relatedTo gptkb:Echo_State_Networks
gptkb:Recurrent_neural_networks
Liquid State Machines
Memristor-based reservoir computing
Optical reservoir computing
Physical reservoir computing
gptkbp:uses Nonlinear activation functions
Randomly connected network
Sparse connectivity
gptkbp:bfsParent gptkb:Herbert_Jaeger
gptkbp:bfsLayer 7