Res Ne Xt-152

GPTKB entity

Statements (67)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Res_Ne_Xt
gptkbp:architectural_style gptkb:Deep_Learning
gptkbp:based_on gptkb:Res_Net
gptkbp:coat_of_arms 152
gptkbp:developed_by gptkb:Facebook_AI_Research
Image processing
gptkbp:has_achievements State-of-the-art performance
https://www.w3.org/2000/01/rdf-schema#label Res Ne Xt-152
gptkbp:introduced gptkb:2017
gptkbp:is_adopted_by gptkb:Research_Institute
gptkbp:is_compared_to gptkb:Inception
gptkb:Dense_Net
gptkb:Res_Net
gptkbp:is_designed_for Scalability
gptkbp:is_evaluated_by gptkb:Image_Net
gptkb:CIFAR-10
gptkb:CIFAR-100
Object detection
Face recognition
Scene understanding
Semantic segmentation
Action recognition
Visual Recognition tasks
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by gptkb:Network-in-Network
gptkbp:is_known_for High accuracy
Modular architecture
High throughput
Flexibility in design
Robustness to overfitting
High performance on benchmarks
gptkbp:is_optimized_for Computational efficiency
gptkbp:is_part_of gptkb:Image_Net_Challenge
AI competitions
Deep Learning frameworks
AI research publications
Model zoo
gptkbp:is_recognized_by Kaggle competitions
gptkbp:is_related_to gptkb:Deep_Residual_Learning
gptkbp:is_supported_by Community contributions
gptkbp:is_used_for Image Classification
gptkbp:is_used_in gptkb:streaming_service
Academic research
Industry applications
Computer Vision tasks
gptkbp:is_utilized_in gptkb:musician
gptkb:product
gptkb:robot
Medical imaging
Autonomous vehicles
Augmented reality
Smart cities
Sports analytics
Facial recognition systems
Real-time applications
Surveillance systems
Retail analytics
gptkbp:performance Top-1 accuracy
Top-5 accuracy
gptkbp:supports Multi-GPU training
gptkbp:training Large-scale datasets
Data augmentation techniques
gptkbp:uses Cardinalities
gptkbp:utilizes Split-Transform-Merge strategy