gptkbp:instance_of
|
gptkb:television_channel
|
gptkbp:bfsLayer
|
5
|
gptkbp:bfsParent
|
gptkb:Res_Ne_Xt
|
gptkbp:architectural_style
|
gptkb:Deep_Learning
|
gptkbp:based_on
|
gptkb:Res_Net
|
gptkbp:coat_of_arms
|
152
|
gptkbp:developed_by
|
gptkb:Facebook_AI_Research
Image processing
|
gptkbp:has_achievements
|
State-of-the-art performance
|
https://www.w3.org/2000/01/rdf-schema#label
|
Res Ne Xt-152
|
gptkbp:introduced
|
gptkb:2017
|
gptkbp:is_adopted_by
|
gptkb:Research_Institute
|
gptkbp:is_compared_to
|
gptkb:Inception
gptkb:Dense_Net
gptkb:Res_Net
|
gptkbp:is_designed_for
|
Scalability
|
gptkbp:is_evaluated_by
|
gptkb:Image_Net
gptkb:CIFAR-10
gptkb:CIFAR-100
Object detection
Face recognition
Scene understanding
Semantic segmentation
Action recognition
Visual Recognition tasks
|
gptkbp:is_implemented_in
|
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
|
gptkbp:is_influenced_by
|
gptkb:Network-in-Network
|
gptkbp:is_known_for
|
High accuracy
Modular architecture
High throughput
Flexibility in design
Robustness to overfitting
High performance on benchmarks
|
gptkbp:is_optimized_for
|
Computational efficiency
|
gptkbp:is_part_of
|
gptkb:Image_Net_Challenge
AI competitions
Deep Learning frameworks
AI research publications
Model zoo
|
gptkbp:is_recognized_by
|
Kaggle competitions
|
gptkbp:is_related_to
|
gptkb:Deep_Residual_Learning
|
gptkbp:is_supported_by
|
Community contributions
|
gptkbp:is_used_for
|
Image Classification
|
gptkbp:is_used_in
|
gptkb:streaming_service
Academic research
Industry applications
Computer Vision tasks
|
gptkbp:is_utilized_in
|
gptkb:musician
gptkb:product
gptkb:robot
Medical imaging
Autonomous vehicles
Augmented reality
Smart cities
Sports analytics
Facial recognition systems
Real-time applications
Surveillance systems
Retail analytics
|
gptkbp:performance
|
Top-1 accuracy
Top-5 accuracy
|
gptkbp:supports
|
Multi-GPU training
|
gptkbp:training
|
Large-scale datasets
Data augmentation techniques
|
gptkbp:uses
|
Cardinalities
|
gptkbp:utilizes
|
Split-Transform-Merge strategy
|