Statements (48)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:mathematical_concept
|
gptkbp:defines |
Hilbert space of functions in which evaluation at each point is a continuous linear functional
|
gptkbp:field |
gptkb:machine_learning
gptkb:mathematics functional analysis statistics |
gptkbp:firstDescribed |
1900s
|
gptkbp:hasApplication |
gptkb:probability_theory
gptkb:signal_processing time series analysis approximation theory pattern recognition regularization |
gptkbp:hasFeature |
enables feature mapping
enables function approximation enables inner product computation via kernel enables kernel methods enables non-linear learning enables regularization in learning enables signal reconstruction enables statistical inference evaluation functional is bounded every function is determined by its values at all points |
gptkbp:hasKernel |
reproducing kernel
|
gptkbp:hasProperty |
inner product
complete separable reproducing kernel |
https://www.w3.org/2000/01/rdf-schema#label |
RKHS
|
gptkbp:isA |
gptkb:Hilbert_space
|
gptkbp:originatedIn |
N. Aronszajn
S. Bergman S. Bochner |
gptkbp:relatedTo |
gptkb:Hilbert_space
gptkb:L2_space gptkb:Mercer's_theorem gptkb:Sobolev_space gptkb:Moore-Aronszajn_theorem feature space kernel trick positive definite kernel |
gptkbp:standsFor |
Reproducing Kernel Hilbert Space
|
gptkbp:usedIn |
gptkb:Gaussian_processes
gptkb:kernel_methods learning theory support vector machines |
gptkbp:bfsParent |
gptkb:reproducing_kernel_Hilbert_space
|
gptkbp:bfsLayer |
6
|