RKHS

GPTKB entity

Statements (48)
Predicate Object
gptkbp:instanceOf gptkb:mathematical_concept
gptkbp:defines Hilbert space of functions in which evaluation at each point is a continuous linear functional
gptkbp:field gptkb:machine_learning
gptkb:mathematics
functional analysis
statistics
gptkbp:firstDescribed 1900s
gptkbp:hasApplication gptkb:probability_theory
gptkb:signal_processing
time series analysis
approximation theory
pattern recognition
regularization
gptkbp:hasFeature enables feature mapping
enables function approximation
enables inner product computation via kernel
enables kernel methods
enables non-linear learning
enables regularization in learning
enables signal reconstruction
enables statistical inference
evaluation functional is bounded
every function is determined by its values at all points
gptkbp:hasKernel reproducing kernel
gptkbp:hasProperty inner product
complete
separable
reproducing kernel
https://www.w3.org/2000/01/rdf-schema#label RKHS
gptkbp:isA gptkb:Hilbert_space
gptkbp:originatedIn N. Aronszajn
S. Bergman
S. Bochner
gptkbp:relatedTo gptkb:Hilbert_space
gptkb:L2_space
gptkb:Mercer's_theorem
gptkb:Sobolev_space
gptkb:Moore-Aronszajn_theorem
feature space
kernel trick
positive definite kernel
gptkbp:standsFor Reproducing Kernel Hilbert Space
gptkbp:usedIn gptkb:Gaussian_processes
gptkb:kernel_methods
learning theory
support vector machines
gptkbp:bfsParent gptkb:reproducing_kernel_Hilbert_space
gptkbp:bfsLayer 6