Statements (44)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:book
|
gptkbp:bfsLayer |
4
|
gptkbp:bfsParent |
gptkb:Matthew_Russell
|
gptkbp:author |
gptkb:Wes_Mc_Kinney
|
gptkbp:focus |
Data manipulation and analysis
|
gptkbp:format |
gptkb:printer
gptkb:book |
https://www.w3.org/2000/01/rdf-schema#label |
Python for Data Analysis
|
gptkbp:impact |
Influenced many data analysis workflows
Standard reference for Python data analysis Widely used in data science education |
gptkbp:is_a_tool_for |
gptkb:Matplotlib
gptkb:Pandas gptkb:Num_Py |
gptkbp:isbn |
978-1491957660
|
gptkbp:language |
English
|
gptkbp:next_edition |
2nd Edition
|
gptkbp:number_of_books |
Time Series Analysis
Data Input and Output Statistical Data Analysis Appendix: Python Language Basics Data Aggregation and Group Operations Data Analysis with Pandas Data Cleaning and Preparation Data Visualization with Matplotlib Data Wrangling with Pandas Introduction to Num Py Machine Learning with Scikit-Learn |
gptkbp:published_year |
gptkb:2012
|
gptkbp:publisher |
gptkb:O'_Reilly_Media
|
gptkbp:related_works |
gptkb:Hands-On_Machine_Learning_with_Scikit-Learn,_Keras,_and_Tensor_Flow
gptkb:R_for_Data_Science gptkb:Data_Science_from_Scratch gptkb:Python_Data_Science_Handbook Practical Statistics for Data Scientists |
gptkbp:subject |
gptkb:physicist
Programming |
gptkbp:target_audience |
Data scientists
Data analysts |
gptkbp:user_reviews |
Focus on real-world applications
Highly recommended for beginners Clear explanations and illustrations Comprehensive guide to data analysis Practical examples and exercises |