Principal component analysis
GPTKB entity
Statements (51)
Predicate | Object |
---|---|
gptkbp:instanceOf |
statistical analysis
dimensionality reduction technique |
gptkbp:abbreviation |
gptkb:PCA
|
gptkbp:application |
gptkb:data_visualization
gptkb:chemometrics exploratory data analysis finance genomics psychology speech recognition compression image compression pattern recognition feature extraction noise reduction face recognition |
gptkbp:assumes |
large variances have important structure
linearity orthogonality of components |
gptkbp:category |
unsupervised learning
multivariate statistics |
gptkbp:form |
orthogonal transformation
eigenvectors of covariance matrix |
gptkbp:goal |
identify principal components
maximize variance reduce dimensionality of data |
https://www.w3.org/2000/01/rdf-schema#label |
Principal component analysis
|
gptkbp:input |
data matrix
|
gptkbp:introduced |
gptkb:Karl_Pearson
|
gptkbp:introducedIn |
1901
|
gptkbp:limitation |
sensitive to scaling
assumes linear relationships components may not be interpretable |
gptkbp:output |
scores
principal components loadings |
gptkbp:relatedTo |
gptkb:factor_analysis
eigenvalue decomposition linear algebra singular value decomposition |
gptkbp:step |
center data
compute covariance matrix compute eigenvectors and eigenvalues project data onto principal components |
gptkbp:usedIn |
gptkb:machine_learning
gptkb:signal_processing data analysis statistics image processing |
gptkbp:bfsParent |
gptkb:Boltzmann_machine
|
gptkbp:bfsLayer |
5
|