Principal component analysis

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf statistical analysis
dimensionality reduction technique
gptkbp:abbreviation gptkb:PCA
gptkbp:application gptkb:data_visualization
gptkb:chemometrics
exploratory data analysis
finance
genomics
psychology
speech recognition
compression
image compression
pattern recognition
feature extraction
noise reduction
face recognition
gptkbp:assumes large variances have important structure
linearity
orthogonality of components
gptkbp:category unsupervised learning
multivariate statistics
gptkbp:form orthogonal transformation
eigenvectors of covariance matrix
gptkbp:goal identify principal components
maximize variance
reduce dimensionality of data
https://www.w3.org/2000/01/rdf-schema#label Principal component analysis
gptkbp:input data matrix
gptkbp:introduced gptkb:Karl_Pearson
gptkbp:introducedIn 1901
gptkbp:limitation sensitive to scaling
assumes linear relationships
components may not be interpretable
gptkbp:output scores
principal components
loadings
gptkbp:relatedTo gptkb:factor_analysis
eigenvalue decomposition
linear algebra
singular value decomposition
gptkbp:step center data
compute covariance matrix
compute eigenvectors and eigenvalues
project data onto principal components
gptkbp:usedIn gptkb:machine_learning
gptkb:signal_processing
data analysis
statistics
image processing
gptkbp:bfsParent gptkb:Boltzmann_machine
gptkbp:bfsLayer 5